SEARCH

SEARCH BY CITATION

References

  • Bathurst, J. C., Flow resistance through the channel network, Channel Network Hydrology, K. Beven, M. J. Kirkby, 6998, John Wiley, New York, 1993.
  • , Documentation of hydrologic, geomorphic, and sediment transport measurements on the Goodwin Creek experimental watershed, northern Mississippi, for the period 1982–1993, preliminary releaseW. A. Blackmarr, Res. Rep. 3Natl. Sediment. Lab., Agric. Res. Serv., U.S. Dep. of Agric., Oxford, Miss., 1995.
  • Bowie, A. J., O. W. Sansom, Innovative techniques for collecting hydrologic data, Proceedings of the 4th Federal Interagency Sedimentation Conference, 1/591/69U.S. Gov. Print. Off., Washington, D. C., 1986.
  • Bras, R. L., Hydrology: An Introduction to Hydrologic Science, 571572, Addison-Wesley, Reading, Mass., 1990.
  • Grissinger, E. H., J. B. Murphey, Bank and bed adjustments in a Yazoo bluffline tributary, Third International Symposium on River Sedimentation, 10031012Univ. of Miss., University, 1986.
  • Grissinger, E. H., J. B. Murphey, Bank stability of Goodwin Creek channel, northern Mississippi, USA, Fourth International Symposium on River Sedimentation, 5966China Ocean Press, Beijing, 1989.
  • Gupta, V. K., D. R. Dawdy, Physical interpretations of regional variations in the scaling exponents of flood quantiles, Hydrol. Processes, 9, 347361, 1995.
  • Gupta, V. K., O. J. Mesa, D. R. Dawdy, Multiscaling theory of flood peaks: Regional quantile analysis, Water Resour. Res., 30(12), 34053421, 1994.
  • Howard, A. D., Theoretical model of optimal drainage networks, Water Resour. Res., 26(9), 21072117, 1990.
  • Ijjász-Vásquez, E. J., R. L. Bras, Scaling regimes of local slope versus contributing area in digital elevation models, Geomorphology, 12, 299311, 1995.
  • Julien, P. Y., J. Wargadalam, Alluvial channel geometry: Theory and applications, J. Hydraul. Eng., 121(4), 312325, 1995.
  • Knighton, D., Fluvial Forms and Processes, 218, Edward Arnold, London, 1984.
  • Kuhnle, R. A., Fractional transport rates of bed load on Goodwin Creek, Dynamics of Gravel-Bed Rivers, P. Billi, et al., 141155, John Wiley, New York, 1992.
  • Kuhnle, R. A., Variations in Bed Material Size on Goodwin Creek, Proceedings of the 6th Federal Interagency Sedimentation Conference, II/68II/74U. S. Gov. Print. Off., Washington, D. C., 1996.
  • Kuhnle, R. A., J. C. Willis, A. J. Bowie, Total sediment load calculations for Goodwin Creek, International Symposium on Sediment Transport ModellingS. S. Y. Wang, 700705Am. Soc. of Civ. Eng., New York, 1989.
  • Kuhnle, R. A., R. L. Bingner, G. R. Foster, E. H. Grissinger, Effect of land use on sediment transport in Goodwin Creek, Water Resour. Res., 32(10), 31893196, 1996.
  • Langbein, W. B., Geometry of river channels, J. Hydraul. Div. Am. Soc. Civ. Eng., 90(HY2), 301312, 1964.
  • Langbein, W. B., L. B. Leopold, Quasi-equilibrium states in channel morphology, Am. J. Sci., 262, 782794, 1964.
  • Leopold, L. B., W. B. Langbein, The concept of entropy in landscape evolution, U. S. Geol. Surv. Prof. Pap., 500-A, 20, 1962.
  • Leopold, L. B., T. Maddock, The hydraulic geometry of stream channels and some physiographic implications, U. S. Geol. Surv. Prof. Pap., 252, 57, 1953.
  • Molnár, P., Energy dissipation in a river network, M.S. thesis,, 158 pp.,Colo. State Univ., Fort Collins, 1996.
  • Molnár, P., andJ. A. Ramírez, Energy dissipation theories and optimal channel characteristics of river networks,Water Resour. Res., 7.
  • Park, C. C., World-wide variations in hydraulic geometry exponents of stream channels: An analysis and some observations, J. Hydrol., 33, 133146, 1977.
  • Petts, G., I. Foster, Channel morphology, Rivers and Landscape, 140174, Edward Arnold, London, 1985.
  • Rigon, R., A. Rinaldo, I. Rodriguez-Iturbe, R. L. Bras, E. J. Ijjász-Vásquez, Optimal channel networks: A framework for the study of river basin morphology, Water Resour. Res., 29(6), 16351646, 1993.
  • Rinaldo, A., I. Rodríguez-Iturbe, R. Rigon, R. L. Bras, E. J. Ijjász-Vásquez, A. Marani, Minimum energy and fractal structures of drainage networks, Water Resour. Res., 28(9), 21832195, 1992.
  • Rodríguez-Iturbe, I., A. Rinaldo, Fractal River Basins: Chance and Self-Organization, 547, Cambridge Univ. Press, New York, 1997.
  • Rodríguez-Iturbe, I., A. Rinaldo, R. Rigon, R. L. Bras, A. Marani, E. J. Ijjász-Vásquez, Energy dissipation, runoff production, and the three-dimensional structure of river basins, Water Resour. Res., 28(4), 10951103, 1992a.
  • Rodríguez-Iturbe, I., E. J. Ijjász-Vasquez, R. L. Bras, D. G. Tarboton, Power law distributions of discharge mass and energy in river basins, Water Resour. Res., 28(4), 10891093, 1992b.
  • Stedinger, J. R., R. M. Vogel, E. Foufoula-Georgiou, Frequency analysis of extreme events, Handbook of Hydrology, D. R. Maidment, 18.2218.29, McGraw-Hill, New York, 1992.
  • Tarboton, D. G., A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33(2), 309319, 1997.
  • Tarboton, D. G., R. L. Bras, I. Rodríguez-Iturbe, Scaling and elevation in river networks, Water Resour. Res., 25(9), 20372051, 1989.
  • Troutman, B. M., Inference for a channel network model and implications for flood scaling, Reduction and Predictability of Natural Disasters, J. B. Rundle, D. L. Turcotte, W. Klein, 97116, Addison-Wesley, Reading, Mass., 1996.
  • Willis, J. C., R. W. Darden, A. J. Bowie, Sediment transport in Goodwin Creek, Proceedings of the 4th Federal Interagency Sedimentation Conference, 4/304/39U. S. Gov. Print. Off., Washington, D. C., 1986.
  • Yang, C. T., Potential energy and stream morphology, Water Resour. Res., 7(2), 311322, 1971.
  • Yang, C. T., C. C. S. Song, Theory of minimum rate of energy dissipation, J. Hydraul. Div. Am. Soc. Civ. Eng., 105(HY7), 769784, 1979.
  • Yang, C. T., C. C. S. Song, Theory of minimum energy and energy dissipation rate, Encyclopedia of Fluid Mechanics, N. D. Cheremisinoff, 353399, Gulf, Houston, Tex., 1986.