SEARCH

SEARCH BY CITATION

References

  • Ahlfeld, D. P., J. M. Mulvey, G. F. Pinder, Designing optimal strategies for contaminated groundwater remediation, Adv. Water Resour., 9, 7784, 1986.
  • Ahlfeld, D. P., J. M. Mulvey, G. F. Pinder, E. F. Wood, Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory, 1, Model development, Water Resour. Res., 24, 431441, 1988.
  • Aldridge, D. F., Linearization of the eikonal equation, Geophysics, 59, 16311632, 1994.
  • Annable, M. D., P. C. Rao, K. Hatfield, W. D. Graham, A. L. Wood, Use of partitioning tracers for measuring residual NAPL distribution in a contaminated aquifer: Preliminary results from a field-scale test2nd Tracer WorkshopI. F. E. Norway, Univ. of Tex.AustinNov. 14–15, 1994.
  • Barman, I., S. Yoon, A. Datta-Gupta, G. A. Pope, In-situ characterization of residual NAPL distribution by stochastic inverse modeling of partitioning tracer testsSPE/EPA Explor. and Prod. Environ. ConfAustin, Tex.Feb. 28 through March 30, 1998.
  • Bear, J., Dynamics of Fluids in Porous Media, Dover, Mineola, N.Y., 1972.
  • Carter, R. D., L. F. Kemp Jr., A. C. Pearce, Discussion of comparison of sensitivity coefficient calculation methods in automatic history matching, Soc. Petrol. Eng. J., 22, 205208, 1982.
  • Cerveny, V., I. A. Molotkov, I. Psencik, The Ray Method in Seismology, Charles Univ. Press, Prague, 1978.
  • Chang, L.-C., C. A. Shoemaker, P. L.-F. Liu, Optimal time-varying pumping rates for groundwater remediation: Application of a constrained optimal control algorithm, Water Resour. Res., 28, 31573173, 1992.
  • Datta-Gupta, A., M. J. King, A semianalytic approach to tracer flow modeling in heterogeneous permeable media, Adv. Water Resour., 18, 924, 1995.
  • Datta-Gupta, A., L. W. Lake, G. A. Pope, Characterizing heterogeneous permeable media with spatial statistics and tracer data using sequential simulated annealing, Math. Geol., 27, 763787, 1995a.
  • Datta-Gupta, A., D. W. Vasco, J. C. S. Long, Sensitivity and spatial resolution of transient pressure and tracer data for heterogeneity characterization, SPE Form. Eval., 12(2), 625637, 1995b.
  • Fatemi, E., B. Engquist, S. Osher, Numerical solution of the high frequency asymptotic expansion for the scalar wave equation, J. Comp. Phys., 120, 145155, 1995.
  • Gelhar, L. W., C. L. Axness, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res., 19, 161180, 1983.
  • Gelhar, L. W., M. A. Collins, General analysis of longitudinal dispersion in nonuniform flow, Water Resour. Res., 7, 15111521, 1971.
  • Golub, G. H., C. F. Van Loan, Matrix Computations, John Hopkins Univ. Press, Baltimore, Md., 1989.
  • Gorelick, S. M., C. I. Voss, P. E. Gill, W. Murry, M. A. Saunders, M. H. Wright, Aquifer reclamation design: The use of contaminant transport simulation combined with nonlinear programming, Water Resour. Res., 20, 415427, 1984.
  • Graham, W. D., D. Mclaughtlin, Stochastic analysis of nonstationary subsurface solute transport, 1, Unconditional moments, Water Resour. Res., 25, 215232, 1989a.
  • Graham, W. D., D. Mclaughlin, Stochastic analysis of nonstationary subsurface solute transport, 2, Conditional moments, Water Resour. Res., 25, 23312355, 1989b.
  • Grundy, R. E., C. J. vanDuijn, C. N. Dawson, Asymptotic profiles with finite mass in one-dimensional contaminant transport through porous media: The fast reaction case, Q. J. Mech. Appl. Math., 47, 69106, 1994.
  • Harneshaug, T., Permeability and saturation distributions from tracer data, M.S. thesis,Univ. of Tex., Austin, 1997.
  • Hyndman, D. W., J. M. Harris, S. M. Gorelick, Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30, 19651977, 1994.
  • Jacquard, P., C. Jain, Permeability distribution from field pressure data, Soc. Pet. Eng. J., 5, 281294, 1965.
  • Jaekel, U., A. Georgescu, H. Vereecken, Asymptotic analysis of nonlinear equilibrium solute transport in porous media, Water Resour. Res., 32, 30933098, 1996.
  • James, A. I., W. D. Graham, K. Hatfield, P. S. C. Rao, M. D. Annable, Optimal estimation of residual non-aqueous phase liquid saturations using partioning tracer concentration data, Water Resour. Res., 33, 26212636, 1997.
  • Jin, M., M. Delshad, V. Dwarakanath, D. C. McKinney, G. A. Pope, K. Sepehrnoori, C. E. Tilburg, Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids, Water Resour. Res., 31, 12011211, 1995.
  • Kabala, Z. J., P. C. D. Milly, Sensitivity analysis of flow in unsaturated heterogeneous porous media: Theory, numerical model, and its verification, Water Resour. Res., 26, 593610, 1990.
  • King, M. J., A. Datta-Gupta, Streamline simulation: A current perspective, In Situ, 22(1), 91140, 1998.
  • Kline, M., I. W. Kay, Electromagnetic Theory and Geometrical Optics, John Wiley, New York, 1965.
  • Knopman, D. S., C. I. Voss, Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design, Water Resour. Res., 23, 253272, 1987.
  • Lake, L. W., Enhanced Oil Recovery, Prentice-Hall, Englewood Cliffs, N.J., 1989.
  • Mclaughlin, D. B., L. R. Townley, A reassessment of the groundwater inverse problem, Water Resour. Res., 32, 11311161, 1996.
  • Medina, A., J. Carrera, Coupled estimation of flow and solute transport parameters, Water Resour. Res., 32, 30633076, 1996.
  • Neele, F., J. C. VanDecar, R. Snieder, A formalism for including amplitude data in tomographic inversions, Geophys. J. Int., 115, 482496, 1993.
  • Nolet, G., Seismic wave propagation and seismic tomography, Seismic Tomography, G. Nolet, 123, D. Reidel, Norwell, Mass., 1987.
  • Paige, C. C., M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse linear systems, Assoc. Comput. Mach. Trans. Math. Software, 8, 195209, 1982.
  • Parker, R. L., Geophysical Inverse Theory, Princeton Univ. Press, Princeton, N.J., 1994.
  • Pope, G. A., M. Jin, V. Dwarakanath, B. A. Rouse, K. Sepehrnoori, Partitioning tracer tests to characterize organic contaminants2nd Tracer WorkshopI. F. E. Norway, Univ. of Tex.AustinNov. 14–15, 1994.
  • Protter, M. H., C. B. Morrey, Modern Mathematical Analysis, Addison-Wesley, Reading, Mass., 1964.
  • Rao, P. S. C., M. D. Annable, R. K. Sillan, D. Dai, K. Hatfield, W. D. Graham, Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation, Water Resour. Res., 33, 26732686, 1997.
  • Robertson, J. M., Hydrodynamics: In Theory and Application, Prentice-Hall, Englewood Cliffs, N.J., 1965.
  • Rubin, Y., Prediction of tracer plume migration in disordered porous media by the method of conditional probabilities, Water Resour. Res., 27, 12911308, 1991.
  • Samper, F. J., S. P. Neuman, Adjoint state equations for advective-dispersive transport, Finite Elements in Water Resources: Proceedings of the VI International Conference, A. Sa da Costa, et al., 423437, Springer-Verlag, New York, 1986.
  • Sethian, J. A., Level Set Methods, Cambridge Univ. Press, New York, 1996.
  • Skaggs, T. H., D. A. Barry, Sensitivity methods for time-continuous, spatially discrete groundwater contaminant transport models, Water Resour. Res., 32, 24092420, 1996.
  • Sun, N.-Z., W. W.-G. Yeh, Coupled inverse problems in groundwater modeling, 1, Sensitivity analysis and parameter identification, Water Resour. Res., 26, 25072525, 1990.
  • Tarantola, A., Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier Sci., New York, 1987.
  • van derZee, S. E. A. T. M., Analytical traveling wave solutions for transport with nonlinear and nonequilibrium adsorption, Water Resour. Res., 26, 25632578, 1990.
  • vanDuijn, C. J., P. Knabner, Traveling waves in the transport of reactive solutes through porous media: Adsorption and binary ion exchange, 1, Trans. Porous Media, 8, 167194, 1992.
  • Vasco, D. W., A. Datta-Gupta, Integrating multiphase production history in stochastic reservoir characterization, SPE Form. Eval., 12(3), 149156, 1997.
  • Vasco, D. W., A. Datta-Gupta, J. C. S. Long, Resolution and uncertainty in hydrologic characterization, Water Resour. Res., 33, 379397, 1997a.
  • Vasco, D. W., J. E. Peterson, K. H. Lee, Ground-penetrating radar velocity tomography in heterogeneous and anisotropic media, Geophysics, 62, 17581773, 1997b.
  • Vasco, D. W., S. Yoon, A. Datta-Gupta, Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients, Proc. of the 1998 Annual Technical Conf. and Exhibit, SPE, 49002, New Orleans, La., 1998.
  • Vemuri, V., W. J. Karplus, Identification of nonlinear parameters of groundwater basins by hybrid computation, Water Resour. Res., 5, 172185, 1969.
  • Yeh, W. W.-G., Review of parameter identification procedures in groundwater hydrology: The inverse problem, Water Resour. Res., 22, 95108, 1986.
  • Zhou, C., W. Cai, Y. Luo, G. T. Schuster, S. Hassanzadeh, Acoustic wave-equation traveltime and waveform inversion of crosshole seismic data, Geophysics, 60, 765773, 1995.