Partially solidified systems

Authors

  • Anonymous


Abstract

The evolution of magmas is a topic of considerable importance in geology and geophysics because it affects volcanology, igneous petrology, geothermal energy sources, mantle convection, and the thermaland chemical evolution of the earth. The dynamics and evolution of magmas are strongly affected by the presence of solid crystals that occur either in suspension in liquid or as a rigid porous matrix through which liquid magma can percolate. Such systems are physically complex and difficult to model mathematically. Similar physical situations are encountered by metallurgists who study the solidification of molten alloys, and applied mathematicians have long been interested in such moving boundary problems. Clearly, it would be of mutual benefit to bring together scientists, engineers, and mathematicians with a common interest in such systems. Such a meeting is being organized as a North Atlantic Treaty Organization (NATO) Advanced Research Workshop on the Structure and Dynamics of Partially Solidified Systems, to be held at Stanford University's Fallen Leaf Lodge at Tahoe, Calif., May 12–16, 1986 The invited speakers and their topics are