Experimental Identification of Electrostatic Plasma Waves Within Ion Conic Acceleration Regions

  1. Tom Chang,
  2. M. K. Hudson,
  3. J. R. Jasperse,
  4. R. G. Johnson,
  5. P. M. Kintner and
  6. M. Schulz
  1. P. M. Kintner

Published Online: 21 MAR 2013

DOI: 10.1029/GM038p0384

Ion Acceleration in the Magnetosphere and Ionosphere

Ion Acceleration in the Magnetosphere and Ionosphere

How to Cite

Kintner, P. M. (1986) Experimental Identification of Electrostatic Plasma Waves Within Ion Conic Acceleration Regions, in Ion Acceleration in the Magnetosphere and Ionosphere (eds T. Chang, M. K. Hudson, J. R. Jasperse, R. G. Johnson, P. M. Kintner and M. Schulz), American Geophysical Union, Washington, D. C.. doi: 10.1029/GM038p0384

Author Information

  1. School of Electrical Engineering, Cornell University, Ithaca, NY 14850

Publication History

  1. Published Online: 21 MAR 2013
  2. Published Print: 1 JAN 1986

ISBN Information

Print ISBN: 9780875900636

Online ISBN: 9781118664216

SEARCH

Keywords:

  • Magnetosphere—Congresses;
  • Ionosphere—Congresses;
  • Ion flow dynamics—Congresses;
  • Space plasmas—Congresses

Summary

The identification of electrostatic modes in the ionospheric and magnetospheric plasma is a difficult process. Some success has been achieved with electrostatic hydrogen cyclotron waves where Doppler broadening is insignificant and with zero-frequency turbulence where the spectrum is entirely Doppler shifted. However, it is not yet possible to identify specific modes in regions of transverse ion acceleration. If the modes are assumed to exist, some limits can be placed on their electric field amplitudes. An experimental technique to measure wavelength directly, thereby circumventing problems created by Doppler shifting, is reviewed.