The Kinetic Approach in Magnetospheric Plasma Transport Modeling

  1. T. E. Moore,
  2. J. H. Waite Jr.,
  3. T. W. Moorehead and
  4. W. B. Hanson
  1. J. L. Horwitz

Published Online: 18 MAR 2013

DOI: 10.1029/GM044p0011

Modeling Magnetospheric Plasma

Modeling Magnetospheric Plasma

How to Cite

Horwitz, J. L. (1988) The Kinetic Approach in Magnetospheric Plasma Transport Modeling, in Modeling Magnetospheric Plasma (eds T. E. Moore, J. H. Waite, T. W. Moorehead and W. B. Hanson), American Geophysical Union, Washington, D. C.. doi: 10.1029/GM044p0011

Author Information

  1. Department of Physics, The University of Alabama in Huntsville, Huntsville, Alabama 35899

Publication History

  1. Published Online: 18 MAR 2013
  2. Published Print: 1 JAN 1988

ISBN Information

Print ISBN: 9780875900704

Online ISBN: 9781118664414



  • Space plasmas—Mathematical models;
  • Magnetosphere—Mathematical models;
  • Ionosphere—Mathematical models


The need for a kinetic approach in magnetospheric plasma transport problems is reviewed, as are the trends in its recent applications. The need for kinetic modeling is particularly obvious when confronted with the astonishing variety of magnetospheric particle measurements that display compelling energy and pitch angle-related spatial and/or temporal dispersion, and various types of highly non-Maxwellian features in the distribution functions. Global problems in which the kinetic approach has recently been applied include solar wind plasma injection and dispersion over the cusp, substorm particle injection near synchronous orbit, synergistic energization of ionospheric ions into ring current populations by waves and induced electric field-driven convection, and ionospheric outflow from restricted source regions into the magnetosphere. Kinetic modeling can include efforts ranging from test-particle techniques to particle-in-cell studies, and this range is considered here. There are some areas where fluid and kinetic approaches have been combined or patched together, and these will be briefly discussed.