Magnetohydrodynamic Boundary Conditions for Global Models

  1. T. E. Moore,
  2. J. H. Waite Jr.,
  3. T. W. Moorehead and
  4. W. B. Hanson
  1. T. G. Forbes

Published Online: 18 MAR 2013

DOI: 10.1029/GM044p0319

Modeling Magnetospheric Plasma

Modeling Magnetospheric Plasma

How to Cite

Forbes, T. G. (1988) Magnetohydrodynamic Boundary Conditions for Global Models, in Modeling Magnetospheric Plasma (eds T. E. Moore, J. H. Waite, T. W. Moorehead and W. B. Hanson), American Geophysical Union, Washington, D. C.. doi: 10.1029/GM044p0319

Author Information

  1. Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824

Publication History

  1. Published Online: 18 MAR 2013
  2. Published Print: 1 JAN 1988

ISBN Information

Print ISBN: 9780875900704

Online ISBN: 9781118664414

SEARCH

Keywords:

  • Space plasmas—Mathematical models;
  • Magnetosphere—Mathematical models;
  • Ionosphere—Mathematical models

Summary

Boundary conditions in the ionosphere and the upstream solar wind are important in determining the dynamics of global magnetohydrodynamic models of the magnetosphere. It is generally recognized that the orientation of the magnetic field in the upstream solar wind strongly modulates the rate of energy input into the magnetosphere by magnetic reconnection. However, other aspects of the upstream boundary conditions may determine whether the reconnection occurs in a patchy manner, as in flux transfer events, or in a global manner, as in the Paschmann et al. (1979) events. Ionospheric boundary conditions should also affect the reconnection process. For example, ionospheric line-tying can cause x-line motion in the outer magnetosphere. If it is assumed that auroras occur on field lines mapping to x-lines, then auroral motions are different than the local convective motion of the plasma in which they occur. Global magnetohydrodynamic models which incorporate both magnetospheric reconnection and ionospheric convection could be used to investigate the effect of reconnection and convection upon dayside and nightside auroral motions during the course of a magnetic substorm.