Magnetoconvection on the Solar Surface

  1. J. H. Waite Jr.,
  2. J. L. Burch and
  3. R. L. Moore
  1. G. W. Simon1,
  2. A. M. Title2,
  3. K. P. Topka2,
  4. T. D. Tarbell2,
  5. R. A. Shine2,
  6. S. H. Ferguson2,
  7. H. Zirin3,
  8. L. Acton4,
  9. D. Duncan4,
  10. M. Finch4,
  11. Z. Frank4,
  12. G. Kelly4,
  13. R. Lindgren4,
  14. M. Morrill4,
  15. N. Ogle4,
  16. T. Pope4,
  17. H. Ramsey4,
  18. R. Reeves4,
  19. R. Rehse4,
  20. R. Wallace4,
  21. J. Harvey4,
  22. J. Leibacher4,
  23. W. Livingston4 and
  24. L. November4

Published Online: 18 MAR 2013

DOI: 10.1029/GM054p0053

Solar System Plasma Physics

Solar System Plasma Physics

How to Cite

Simon, G. W., Title, A. M., Topka, K. P., Tarbell, T. D., Shine, R. A., Ferguson, S. H., Zirin, H., Acton, L., Duncan, D., Finch, M., Frank, Z., Kelly, G., Lindgren, R., Morrill, M., Ogle, N., Pope, T., Ramsey, H., Reeves, R., Rehse, R., Wallace, R., Harvey, J., Leibacher, J., Livingston, W. and November, L. (1989) Magnetoconvection on the Solar Surface, in Solar System Plasma Physics (eds J. H. Waite, J. L. Burch and R. L. Moore), American Geophysical Union, Washington, D. C.. doi: 10.1029/GM054p0053

Author Information

  1. 1

    Air Force Geophysics Laboratory, National Solar Observatory, Sunspot, NM 88349

  2. 2

    Lockheed Palo Alto Research Laboratory (LPARL), Palo Alto, CA 94304

  3. 3

    California Institute of Technology, Pasadena, CA 91125

  4. 4

    National Solar Observatory,

Publication History

  1. Published Online: 18 MAR 2013
  2. Published Print: 1 JAN 1989

ISBN Information

Print ISBN: 9780875900742

Online ISBN: 9781118664315



  • Space plasmas;
  • Sun;
  • Magnetosphere;
  • Astrophysics


We describe and illustrate the first high-resolution observations of horizontal flows on the solar surface and their relation to magnetic field structure seen in the Sun's photosphere. The velocity data were deduced from white-light images obtained by the Solar Optical Universal Polarimeter (SOUP) instrument flown as part of NASA's Spacelab 2 mission (Space Shuttle flight 51-F, STS-19). Solar granules (with a typical size scale of 1 Mm and lifetime of 15 min) were used as tracers to measure largerscale, longer-lived flows including mesogranules (6–12 Mm), supergranules (30 Mm), radial outflows from a sunspot, and streams (of length 50–100 Mm, width 5–10 Mm). These flows were compared to a 9-hour time series of the solar magnetic field obtained at the same time at the Big Bear Solar Observatory (BBSO). The flow field and the magnetic structure agree in remarkable detail. Indeed, the data suggest strongly that the flow field is a nearly perfect descriptor of the motion and evolution of the magnetic field (with the exception of the strongest fields within active regions which are able to inhibit the convection). If such measurements can be made synoptically from space, or under good seeing conditions from a ground-based observatory, it should be possible to pinpoint loci of magnetic mixing, twisting, and stress buildup, and thus predict the occurrence of solar flares, coronal heating, and mass ejections.