Climate Variability in an Estuary: Effects of Riverflow on San Francisco Bay

  1. David H. Peterson
  1. David H. Peterson1,
  2. Daniel R. Cayan2,
  3. John F. Festa3,
  4. Frederic H. Nichols1,
  5. Roy A. Walters4,
  6. James V. Slack1,
  7. Steven E. Hager1 and
  8. Laurence E. Schemel1

Published Online: 23 MAR 2013

DOI: 10.1029/GM055p0419

Aspects of Climate Variability in the Pacific and the Western Americas

Aspects of Climate Variability in the Pacific and the Western Americas

How to Cite

Peterson, D. H., Cayan, D. R., Festa, J. F., Nichols, F. H., Walters, R. A., Slack, J. V., Hager, S. E. and Schemel, L. E. (1989) Climate Variability in an Estuary: Effects of Riverflow on San Francisco Bay, in Aspects of Climate Variability in the Pacific and the Western Americas (ed D. H. Peterson), American Geophysical Union, Washington, D. C.. doi: 10.1029/GM055p0419

Author Information

  1. 1

    U.S. Geological Survey345 Middlefield Road, Ms-496, Menlo Park, Ca 94025

  2. 2

    Scripps Institution of Oceanographya-020, University Of California-San Diego, La Jolla, Ca 92093-0224

  3. 3

    Noaa/Aoml4301 Rickenbacker Causeway, Miami, Fl 33149

  4. 4

    U.S. Geological Survey1201 Pacific Avenue, Tacoma, Wa 98416

Publication History

  1. Published Online: 23 MAR 2013
  2. Published Print: 1 JAN 1989

ISBN Information

Print ISBN: 9780875900728

Online ISBN: 9781118664285

SEARCH

Keywords:

  • Climatic changes—Pacific Area.;
  • Paleoclimatology—Pacific Area.;
  • Climatic changes—West (U.S.);
  • Paleoclimatology—West (U.S.);
  • Atmospheric carbon dioxide.

Summary

A simple conceptual model of estuarine variability in the context of climate forcing has been formulated using up to 65 years of estimated mean-monthly delta flow, the cumulative freshwater flow to San Francisco Bay from the Sacramento-San Joaquin River, and salinity observations near the mouth, head, mid-estuary, and coastal ocean. Variations in delta flow, the principal source of variability in the bay, originate from anomalous changes in northern and central California streamflow, much of which is linked to anomalous winter sea level pressure (“CPA”) in the eastern Pacific. In years when CPA is strongly negative, precipitation in the watershed is heavy, delta flow is high, and the bay's salinity is low; similarly, when CPA is strongly positive, precipitation is light, delta flow is low, and the bay's salinity is high. Thus the pattern of temporal variability in atmospheric pressure anomalies is reflected in the streamflow, then in delta flow, then in estuarine variability.

Estuarine salinity can be characterized by river to ocean patterns in annual cycles of salinity in relation to delta flow. Salinity (total dissolved solids) data from the relatively pristine mountain streams of the Sierra Nevada show that for a given flow, one observes higher salinities during the rise in winter flow than on the decline. Salinity at locations throughout San Francisco Bay estuary are also higher during the rise in winter flow than the decline (because it takes a finite time for salinity to fully respond to changes in freshwater flow). In the coastal ocean, however, the annual pattern of sea surface salinity is reversed: lower salinities during the rise in winter flow than on the decline due to effects associated with spring upwelling. Delta flow in spring masks these effects of coastal upwelling on estuarine salinity, including near the mouth of the estuary and, in fact, explains in a statistical sense 86 percent of the variance in salinity at the mouth of the estuary. Some of the variations in residual salinity in the bay not explained by delta flow appear to correlate with variability in coastal ocean properties. Interestingly CPA correlates also with anomalous sea surface salinity in the coastal ocean adjacent to the bay, especially in spring (albeit through a different mechanism than streamflow). For instance, when the atmospheric pressure anomaly as indicated for streamflow is high, the coastal ocean upper-layer Ekman transport is probably in the offshore direction resultingin higher sea surface salinities along the coast (with a phase lag). This circulation corresponds, in direction, to density driven estuarine circulation. In contrast a low atmospheric pressure regime leads to an onshore surface transport, and therefore opposes estuarine circulation.

The influence of variations in delta flow on estuarine/phytoplankton/biochemical dynamics can be illustrated with numerical simulation models. For example, when riverflow is high the resulting low estuarine water residence time limits phytoplankton biomass and the observed effects of phytoplankton productivity on estuarine biochemistry are minimal. When riverflow is low but suspended sediment concentrations are high, light becomes a more important factor limiting phytoplankton biomass than residence time and effects of phytoplankton productivity on estuarine biochemistry are also minimal. When both riverflow and suspended sediment concentrations are low, phytoplankton biomass increases and phytoplankton productivity emerges as a major control on estuarine biochemistry: phytoplankton activity draws down and maintains very low ambient concentrations of dissolved silica and partial pressures of carbon dioxide (shifting pH to higher values). However, after an extended period of very low delta flow the major controls on estuarine biochemistry appear to change, possibly because benthic exchange processes (both sources and sinks) strengthen as salinity rises and benthic filter-feeding invertebrates migrate upstream with increasing salinity.