Get access

A seismic refraction technique used for subsurface investigations at Meteor Crater, Arizona

Authors

  • H. D. Ackermann,

  • R. H. Godson,

  • J. S. Watkins


Abstract

A seismic refraction technique for interpreting the subsurface shape and velocity distribution of an anomalous surface feature such as an impact crater is described. The method requires the existence of a relatively deep refracting horizon and combines data obtained from both standard shallow refraction spreads and distant offset shots by using the deep refractor as a source of initial arrivals. Results obtained from applying the technique to Meteor crater generally agree with the known structure of the crater deduced by other investigators and provide new data on an extensive fractured zone surrounding the crater. The breccia lens is computed to extend roughly 190 m below the crater floor, about 30 m less than the value deduced from early drilling data. Rocks around the crater are fractured as distant as 900 m from the rim crest and to a depth of at least 800 m beneath the crater floor.

Ancillary