Multiple scattering of electromagnetic waves by rain


  • A. Tsolakis,

  • W. L. Stutzman


As the operating frequencies of communications systems move higher into the millimeter wave region, the effects of multiple scattering in precipitation media become more significant. In this paper, general formulations are presented for single, first-order multiple, and complete multiple scattering. Included specifically are distributions of particle size, shape, and orientation angle, as well as variation in the medium density along the direction of wave propagation. Calculations are performed for rain. It is shown that the effects of higher-order scattering are not noticeable in either attenuation or channel isolation on a dual-polarized system until frequencies of about 30 GHz are reached. The complete multiple-scattering formulation presented gives accurate results at high millimeter wave frequencies as well as including realistic medium parameter distributions. Furthermore, it is numerically efficient.