Get access
Tectonics

Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere

Authors

  • Alberto Malinverno,

  • William B. F. Ryan


Abstract

Previously proposed models for the evolution of the Tyrrhenian basin-Apenninic arc system do not seem to satisfactorily explain the dynamic relationship between extension in the Tyrrhenian and compression in the Apennines. The most important regional plate kinematic constraints that any model has to satisfy in this case are: (1) the timing of extension in the Tyrrhenian and compression in the Apennines, (2) the amount of shortening in the Apennines, (3) the amount of extension in the Tyrrhenian, and (4) Africa-Europe relative motion. The estimated contemporaneous (post-middle Miocene) amounts of extension in the Tyrrhenian and of shortening in the Apennines appear to be very similar. The extension in the Tyrrhenian Sea is mostly accomplished in an E-W direction, and cannot be straightforwardly related to the calculated N-S Africa-Europe convergence. A model of outward arc migration fits all these constraints. In a subducting system, the subduction zone is expected to migrate outward due to the sinking of the underthrusting plate into the mantle. The formation of a back-arc or internal basin, i.e. of a basin internal to the surrounding belt of compression, (in this case the Tyrrhenian Sea) is then expected to take place if the motion of the overriding plate does not compensate for the retreat of the subduction zone. The sediment cover will be stripped from the underthrusting plate by the outward migrating arc of the overriding plate, and will accumulate to form an accretionary wedge. This accretionary body will grow outward in time, and will eventually become an orogenic belt, (in this case the present Apennines) when the migrating arc collides with the stable continental foreland on the subducting plate. An arc migration model satisfactorily accounts for the basic features of the Tyrrhenian-Apennine system and for its evolution from 17 Ma to the present, and appears to be analogous to the tectonic evolution of other back-arc settings both inside and outside the Mediterranean region. An interesting implication of the proposed accretionary origin of the Apennines is that the problematic “Argille Scagliose” (scaly clays) melange units might have been emplaced as overpressured mud diapirs, as observed in other accretionary prisms, and not by gravity slides from the internal zones.

Get access to the full text of this article

Ancillary