• 1
    Stavnezer J. Molecular processes that regulate class switching. Curr Top Microbiol Immunol 2000;245:127168.
  • 2
    Jabara HH, Fu SM, Geha RS & Vercelli D. CD40 and IgE: synergism between anti-CD40 mAb and IL-4 in the induction of IgE synthesis by highly purified human B cells. J Exp Med 1990;172:18611864.
  • 3
    McKenzie ANJ, Culpepper JA & De Waal Malefyt R, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci U S A 1993;90:37353739.
  • 4
    Jung S, Rajewsky K & Radbruch A. Shutdown of class switch recombination by deletion of a switch region control element. Science 1993;259:984987.
  • 5
    Zhang J, Bottaro A, Li S, Stewart V & Alt FW. Targeted mutation in the Iγ2b exon results in a selective Iγ2b deficiency in mice. EMBO J 1993;12:35293537.
  • 6
    Xu L, Gorham B, Li SC, Bottaro A, Alt FW & Rothman P. Replacement of germ-line ε promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc Natl Acad Sci U S A 1993;90:37053709.
  • 7
    Bottaro A, Lansford R, Xu L, Zhang J, Rothman P & Alt FW. S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J 1994;13:665674.
  • 8
    Lorenz M, Jung S & Radbruch A. Switch transcripts in immunoglobulin class switching. Science 1995;267:18251828.
  • 9
    Hein K, Lorenz MGO, Siebenkotten G, Petry K, Christine R & Radbruch A. Processing of switch transcripts is required for targeting of antibody class switch recombination. J Exp Med 1998;188:23692374.
  • 10
    Qiu G, Harriman GR & Stavnezer J. Iα exon replacement mice synthesize a spliced HPRT-Cα transcript which may explain their ability to switch to IgA. Inhibition of switching to IgG in these mice. Int Immunol 1999;11:3746.
  • 11
    Hanakahi LA, Dempsey LA, Li MJ & Maizels N. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proc Natl Acad Sci U S A 1997;94:36053610.
  • 12
    Dempsey LA, Sun H, Hanakahi LA & Maizels N. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D: a role for G-G pairing in immunoglobulin switch recombination. J Biol Chem 1999;274:10661071.
  • 13
    Ogawa H, Johzuka K, Nakagawa T, Leem SH & Hagihara AH. Functions of the yeast meiotic recombination genes, MRE11 and MRE2. Adv Biophys 1995;31:6776.
  • 14
    Lee CG, Kondo S & Honjo T. Frequent but biased class switch recombination in the S mu flanking regions. Curr Biol 1998;8:227230.
  • 15
    Kinoshita K & Honjo T. Unique and unprecedented recombination mechanisms in class switching. Curr Opin Immunol 2000;12:195198.
  • 16
    Jabara HH, Loh R, Ramesh N, Vercelli D & Geha RS. Sequential switching from μ to ε via γ4 in human B cells stimulated with IL-4 and hydrocortisone. J Immunol 1993;151:45284533.
  • 17
    Stavnezer J. A touch of antibody class. Science 2000;288:984985.
  • 18
    Reaban ME & Griffin JA. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 1990;348:342344.
  • 19
    Tracy RB & Lieber MR. Transcription-dependent R-loop formation at mammalian class switch sequences. EMBO J 2000;19:10551067.
  • 20
    Tracy RB, Hsieh CL & Lieber MR. Stable RNA/DNA hybrids in the mammalian genome: inducible intermediates in immunoglobulin class switch recombination. Science 2000;288:10581061.
  • 21
    Mussmann R, Courtet M, Schwager J & Du Pasquier L. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur J Immunol 1997;27:26102619.
  • 22
    Casellas R, Nussenzweig A & Wuerffel R, et al. Ku80 is required for immunoglobulin isotype switching. EMBO J 1998;8:24042411.
  • 23
    Schrader CE, Edelmann W, Kucherlapati R & Stavnezer J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J Exp Med 1999;190:323330.
  • 24
    Mikita T, Campbell D, Wu P, Williamson K & Schindler U. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol 1996;16:58115820.
  • 25
    Mikita T, Kurama M & Schindler U. Synergistic activation of the germline ε promoter mediated by Stat6 and C/EBPβ. J Immunol 1998;161:18221828.
  • 26
    Linehan LA, Warren WD, Thompson PA, Grusby MJ & Berton MT. STAT6 is required for IL-4-induced germline Ig gene transcription and switch recombination. J Immunol 1998;161:302310.
  • 27
    Tinnell SB, Jacobs-Helber SM, Sterneck E, Sawyer ST & Conrad DH. STAT6, NF-κB and C/EBP in CD23 expression and IgE production. Int Immunol 1998;10:15291538.
  • 28
    Shimoda K, Van Deursen J & Sangster MY, et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996;380:630633.
  • 29
    Takeda K, Tanaka T & Shi W, et al. Essential role of Stat6 in IL-4 signalling. Nature 1996;380:627630.
  • 30
    Kaplan MH, Schindler U, Smiley ST & Grusby MJ. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 1996;4:313319.
  • 31
    Ihle JN & Kerr IM. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 1995;11:6974.
  • 32
    Leonard WJ & O'Shea JJ. Jaks and Stats: biological implications. Annu Rev Immunol 1998;16:293322.
  • 33
    Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M & McKnight SL. An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994;265:17011706.
  • 34
    Seidel HM, Milocco LH, Lamb P, Darnell JE, Stein RB & Rosen J. Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sci U S A 1995;92:30413045.
  • 35
    Schindler U, Wu P, Rothe M, Brasseur M & McKnight SL. Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity 1995;2:689697.
  • 36
    Messner B, Stütz AM, Albrecht B, Peiritsch S & Woisetschläger M. Cooperation of binding sites for STAT6 and NFκB/rel in the IL-4-induced up-regulation of the human IgE germline promoter. J Immunol 1997;159:33303337.
  • 37
    Weston K. Myb proteins in life, death and differentiation. Curr Opin Genet Dev 1998;8:7681.
  • 38
    Lundgren M, Ström L & Bergquist L-O, et al. Cell cycle regulation of immunoglobulin class switch recombination and germ-line transcription: potential role of Ets family members. Eur J Immunol 1995;25:20422051.
  • 39
    Facchinetti V, Loffarelli L & Schreek S, et al. Regulatory domains of the A-myb transcription factor and its interaction with the CBP/p300 adaptor molecules. Biochem J 1997;324:729736.
  • 40
    Lane S, Farlie P & Watson R. B-Myb function can be markedly enhanced by cyclin-A dependent kinase and protein truncation. Oncogene 1997;14:24452453.
  • 41
    Ziebold U & Klempnauer KH. Linking Myb to the cell cycle: cyclin-dependent phosphorylation and regulation of A-Myb activity. Oncogene 1997;15:10111019.
  • 42
    Bartsch O, Horstmann S, Toprak K, Klempnauer KH & Ferrari S. Identification of cyclin A/Cdk2 phosphorylation sites in B-Myb. Eur J Biochem 1999;260:384391.
  • 43
    Lam E, Robinson C & Watson R. Characterization and cell cycle-regulated expression of mouse B-Myb. Oncogene 1992;7:18851890.
  • 44
    Gingras S, Simard J, Groner B & Pfitzner E. p300/CBP is required for transcriptional induction by interleukin-4 and interacts with Stat6. Nucleic Acids Res 1999;27:27222729.
  • 45
    McDonald C & Reich NC. Cooperation of the transcriptional coactivators CBP and p300 with Stat6. J Interferon Cytokine Res 1999;19:711722.
  • 46
    Chang C-C, Ye BH, Chaganti RSK & Dalla-Favera R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc Natl Acad Sci U S A 1996;93:69476952.
  • 47
    Dent AL, Shaffer AL, Yu X, Allman D & Staudt LM. Control of inflammation: cytokine expression and germinal center formation by BCL-6. Science 1997;276:589592.
  • 48
    Harris MB, Chang CC & Berton MT, et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of Iε transcription and immunoglobulin E switching. Mol Cell Biol 1999;19:72647275.
  • 49
    Albrecht B, Peiritsch S & Woisetschläger M. A bifunctional control element in the human IgE germline promoter involved in repression and IL-4 activation. Int Immunol 1994;6:11431151.
  • 50
    Wang D-Z, Cherrington A, Famakin-Mosuro B & Boothby M. Independent pathways for de-repression of the mouse immunoglobulin heavy chain germ-line ε promoter: an IL-4 NAF/NF-IL4 site as a context-dependent negative element. Int Immunol 1996;8:977989.
  • 51
    Köhler I & Rieber EP. Allergy-associated Iε and Fcε receptor II (CD23b) genes activated via binding of an interleukin-4-induced transcription factor to a novel responsive element. Eur J Immunol 1993;23:30663071.
  • 52
    Delphin S & Stavnezer J. Characterization of an IL-4 responsive region in the immunoglobulin heavy chain germline ε promoter: regulation by NF-IL-4, a C/EBP family member, and NF-κB/p50. J Exp Med 1995;181:181192.
  • 53
    Iciek LA, Delphin SA & Stavnezer J. CD40 cross-linking induces Igε germline transcripts in B cells via activation of NF-κB: synergy with IL-4 induction. J Immunol 1997;158:47694779.
  • 54
    Lin S-C & Stavnezer J. Activation of NF-κB/Rel by CD40 engagement induces the mouse germ line immunoglobulin Cγ1 promoter. Mol Cell Biol 1996;16:45914603.
  • 55
    Shen C-H & Stavnezer J. Interaction of Stat6 and NF-κB: direct association and synergistic activation of interleukin-4-induced transcription. Mol Cell Biol 1998;18:33953404.
  • 56
    Adams B, Dörfler P & Aguzzi A, et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 1992;6:15891607.
  • 57
    Neurath MF, Stüber ER & Strober W. BSAP: a key regulator of B-cell development and differentiation. Immunol Today 1995;16:564569.
  • 58
    Liao F, Birshtein BK, Busslinger M & Rothman P. The transcription factor BSAP (NF-HB) is essential for immunoglobulin germ-line ε tran-scription. J Immunol 1994;152:29042911.
  • 59
    Thienes CP, De Monte L, Monticelli S, Busslinger M, Gould HJ & Vercelli D. The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the human ε germline promoter. J Immunol 1997;158:58745882.
  • 60
    Stutz AM & Woisetschlager M. Functional synergism of STAT6 with either NF-κB or PU.1 to mediate IL-4-induced activation of IgE germline gene transcription. J Immunol 1999;163:43834391.
  • 61
    Qiu G & Stavnezer J. Overexpression of BSAP/Pax5 inhibits switching to IgA and enhances switching to IgE in the I.29μ B cell line. J Immunol 1998;161:29062918.
  • 62
    Neurath MF, Max EE & Strober W. Pax5 (BSAP) regulates the murine immunoglobulin 3′α enhancer by suppressing binding of NF-αP, a protein that controls heavy chain transcription. Proc Natl Acad Sci U S A 1995;92:53365340.
  • 63
    Wallin JJ, Rinkenberger JL, Rao S, Gackstetter ER, Koshland ME & Zwollo P. B cell-specific activator protein prevents two activator factors from binding to the immunoglobulin J chain promoter until the antigen-driven stages of B cell development. J Biol Chem 1999;274:1595915965.
  • 64
    Lundgren M, Larsson C, Femino A, Xu M, Stavnezer J & Severinson E. Activation of the Ig germ-line γ1 promoter. Involvement of C/enhancer–binding protein transcription factors and their possible interactions with an NF-IL-4 site. J Immunol 1994;153:29832995.
  • 65
    De Monte L, Thienes CP, Monticelli S, Busslinger M, Gould HJ & Vercelli D. Regulation of human ε germline transcription: role of B cell-specific activator protein (BSAP). Int Arch Allergy Immunol 1997;113:3538.