• Chlorophyll fluorescence;
  • energy dissipation;
  • Helianthus annuus;
  • periwinkle;
  • photoprotection;
  • photosynthesis;
  • photosystem II;
  • sunflower;
  • Vinca major;
  • Vinca minor;
  • xanthophyll cycle;
  • zeaxanthin

In the present study we explored the possibility of assessing the allocation of photons absorbed by photosystem II (PSII) antennae to thermal energy dissipation and photosynthetic electron transport in leaves of several plant species under field conditions. Changes in chlorophyll fluorescence parameters were determined in situ over the course of an entire day in the field in sun-exposed leaves of two species with different maximal rates of photosynthesis, Helianthus annuus (sunflower) and Vinca major. Leaves of Vinca minor (periwinkle) growing in a deeply shaded location were also monitored. We propose using diurnal changes in the efficiency of open PSII centers (F′v/F′m) in these sun and shade leaves to (a) assess diurnal changes in the allocation of absorbed light to photochemistry and thermal energy dissipation and, furthermore, (b) make an estimate of changes in the rate of thermal energy dissipation, an analogous expression to the rate of photochemistry. The fraction of light absorbed in PSII antennae that is dissipated thermally (D) is proposed to be estimated from D = 1-F′v/F′m, in analogy to the widely used estimation of the fraction of light absorbed in PSII antennae (P) that is utilized in PSII photochemistry from P = F′v/F′m× qP (where qP is the coefficient for photochemical quenching; Genty, B., Briantais, J.-M. & Baker, N. R. 1989. Biochim. Biophys. Acta 990: 87-92). The rate of thermal dissipation is consequently given by D × PFD (photon flux density), again in analogy to the rate of photochemistry P × PFD, both assuming a matching behavior of photosystems I and II. Characterization of energy dissipation from the efficiency of open PSII centers allows an assessment from a single set of measurements at any time of day; this is particularly useful under field conditions where the fully relaxed reference values of variable or maximal fluorescence needed for the computation of nonphotochemical quenching may not be available. The usefulness of the assessment described above is compared with other currently used parameters to quantify nonphotochemical and photochemical chlorophyll fluorescence quenching.