SEARCH

SEARCH BY CITATION

Metal toxicity (Al and heavy metals) is a major constraint affecting root growth in a number of natural or managed ecosystems. Fine roots of the majority of plant species are associated with mycorrhizal fungi, which may modify the sensitivity of roots to metal stress. In this review, we summarise the available evidence demonstrating beneficial effects of ectomycorrhizas in alleviation of metal toxicity in forest tree seedlings. We identify experimental shortcomings of past research (e.g. the use of shoot metal concentrations as a measure of metal uptake, use of microanalytical techniques biased by element redistribution) that may confound major conclusions drawn from these experiments. Although there is no doubt that in many cases ectomycorrhizal fungi indeed ameliorate metal stress in their host plants, the mechanism(s) involved remain(s) unclear. The role of metal sorption on fungal tissues thought to reduce metal exposure of the host plant is critically reviewed. As direct evidence (both under artificial and soil conditions) supporting a unique role of fungal immobilisation of metals is lacking so far, there is an urgent need to also test alternative tolerance mechanisms such as the release of metal chelating substances, or nutritional and hormonal effects mediated by mycorrhizal fungi.