SEARCH

SEARCH BY CITATION

Survival and growth of temperate zone woody plants under changing seasonal conditions is dependent on proper timing of cold acclimation and development of vegetative dormancy, shortening photoperiod being an important primary signal to induce these adaptive responses. To elucidate the physiological basis for climatic adaptation in trees, we have characterized photoperiodic responses in the latitudinal ecotypes of silver birch (Betula pendula Roth) exposed to gradually shortening photoperiod under controlled conditions. In all ecotypes, shortening photoperiod triggered growth cessation, cold acclimation and dormancy development, that was accompanied by increases in endogenous abscisic acid (ABA) and decreases in indole-3-acetic acid (IAA). There were distinct differences between the ecotypes in the rates and degrees of these responses. The critical photoperiod and the photoperiodic sensitivity for growth cessation varied with latitudinal origin of the ecotype. The northern ecotype had a longer critical photoperiod and a greater photoperiodic sensitivity than the southern ecotype. Compared with the southern ecotypes, the northern ecotype was more responsive to shortening photoperiod, resulting in earlier cold acclimation, dormancy development, increase in ABA content and decrease in IAA content. However, at the termination of the experiment, all the ecotypes had reached approximately the same level of cold hardiness (−12 to −14°C), ABA content (2.1–2.3 µg g−1 FW) and IAA content (17.2–20.3 ng g−1 FW). In all ecotypes, increase in ABA levels preceded development of bud dormancy and maximum cold hardiness. IAA levels decreased more or less parallel with increasing cold hardiness and dormancy, suggesting a role of IAA in the photoperiodic control of growth, cold acclimation and dormancy development in birch.