It has become increasingly clear that life-history patterns among the vertebrates have been shaped by the plethora and variety of immunological risks associated with parasitic faunas in their environments. Immunological competence could very well be the most important determinant of life-time reproductive success and fitness for many species. It is generally assumed by evolutionary ecologists that providing immunological defences to minimise such risks to the host is costly in terms of necessitating trade-offs with other nutrient-demanding processes such as growth, reproduction, and thermoregulation. Studies devoted to providing assessments of such costs and how they may force evolutionary trade-offs among life-history characters are few, especially for wild vertebrate species, and their results are widely scattered throughout the literature. In this paper we attempt to review this literature to obtain a better understanding of energetic and nutritional costs for maintaining a normal immune system and examine how costly it might be for a host who is forced to up-regulate its immunological defence mechanisms. The significance of these various costs to ecology and life history trade-offs among the vertebrates is explored. It is concluded that sufficient evidence exists to support the primary assumption that immunological defences are costly to the vertebrate host.