SEARCH

SEARCH BY CITATION

The effects of two phenological constraints in resource investment to reproduction – resource limitation at the flowering stage and unpredictability of resources gained after flowering – on the resource allocation between male and female functions in monocarpic plants are considered using the ESS (evolutionarily stable strategy) approach. The model predicts that the sex allocation including the seed maturation stage has a female bias, when the quantity of reproductive resources available at flowering is small compared with that which is obtained after flowering, or when the cost of seed maturation relative to ovule production is low. The fluctuation of the quantity of resources available for seed maturation favors overproduction of ovules. As a result, more resources are allocated to female function and less to male function at flowering. The ESS allocation depends on the variability of resources and the cost of seed maturation relative to ovule production. The probability that total resource allocation has a female bias becomes higher than 0.5, and it depends on the cost of seed maturation relative to ovule production rather than resource variability. On the other hand, the probability that resource allocation has a female bias decreases with resource variability if we assume that the floral sex ratio is fixed. Future studies of plant sex allocation would profit by taking account of the phenological process of reproduction such as ovule production or seed maturation.