Spatial structure is of central importance in the dynamics of plant-parasite interactions and is imposed by the growth habit and distribution of host plants and by parasite dispersal which is frequently restricted. To investigate the effects of spatial heterogeneity on the dynamics of plant parasites we introduce a simple model for epidemic development within a spatially structured host population. Here the host population is subdivided into a number of patches which are linked to allow for transmission from one patch to another with the connections defining the spatial structure of the host population. Three key parameters are identified that play a critical role in the ability of the parasite to invade and persist within the host population: the within-patch parasite basic reproductive number which characterises the infection dynamics at the local spatial scale; and the neighbourhood of interaction which describes which patches interact with which and the strength of coupling between patches within the neighbourhood which together characterise the spread of the parasite over larger spatial scales. Using both deterministic and stochastic formulations of the model, we investigate how the thresholds and probabilities of invasion and persistence are affected by these parameters, by demographic stochasticity and by differences in the initial level of infection.