Interspecific variation in sapling mortality in relation to growth and soil moisture


  • John P. Caspersen,

  • Richard K. Kobe

J. P. Caspersen, Dept of Ecology and Evolutionary Biology, Univ. of Conneticut, Storrs, CT 06269-3042, USA (present address: Dept of Ecology and Evolutionary Biology, Princeton Univ., Princeton, NJ 08544, USA []). – R. K. Kobe, Dept of Forestry, Michigan State Univ., Natural Resources Building, East Lansing, MI 48824-1222, USA.


To examine the causes of landscape variation in forest community composition, we have quantified sapling mortality as a function of growth and soil moisture for seven dominant species in transition oak-northern hardwood forests of the northeastern USA. We located saplings in sites that encompassed a wide range of variation in soil moisture and light availability. In mesic conditions, the probability of mortality decays rapidly with increasing growth among shade tolerant species and more gradually among shade intolerant species: the rank order of survivorship at low growth rates is Tsuga canadensis>Fagus grandifolia>Acer saccharum>Fraxinus americana>Acer rubrum>Quercus rubra>Pinus strobus. The relationship between probability of mortality and growth does not vary with soil moisture among species insensitive to drought: Tsuga canadensis, Quercus rubra, and Pinus strobus. However, probability of mortality increases substantially with decreasing soil water availability for the other four species. Acer saccharum and Fagus grandifolia have high mortality rates under xeric conditions even when their growth is not suppressed. Acer rubrum and Fraxinus americana exhibited a steady but more gradual increase in the probability of mortality with decreasing soil moisture. Among the five deciduous hardwood species we examined there is a weak inverse relationship between the ability to survive growth suppression, a measure of shade tolerance, and the ability to survive in xeric conditions, a measure of drought tolerance. Tsuga canadensis, however, is tolerant of growth suppression and exhibits high survivorship in xeric conditions, while Pinus strobus is intolerant of growth suppression but insensitive to soil moisture. Species differences in water-dependent mortality are consistent with the species distributions across landscape gradients of soil water availability.