Intraspecific competition and density dependence in an Ephestia kuehniella–Venturia canescens laboratory system

Authors

  • Stephen D. Lane,

  • Nicholas J. Mills


S. D. Lane and N. J. Mills, Dept of Integrative Biology, and Dept of Environmental Science, Policy and Management, Univ. of California, Berkeley, CA 94720-3112, USA (nmills@nature.berkeley.edu).

Abstract

A model host-parasitoid system of Ephestia kuehniella and Venturia canescens was used to examine the influence of host and parasitoid density on host and parasitoid life-history parameters via a two-way factorial experimental design (5 initial host densities×3 parasitoid densities). In the absence of parasitoids, E. kuehniella experienced scramble-type competition with reduced growth, diminished adult size and a subsequent fecundity trade-off for mortality. The mortality that did occur was confined to the late larval and pupal stages. In the presence of parasitoids attacking the late larval stage, competition changed from scramble for food to contest for enemy-free space, with hosts escaping parasitism being small with low fecundity and reduced egg size, and with parasitoid adult size inversely dependent on host density. Total insect emergence (host+parasitoid), a measure of the influence of host resource competition on survivorship, exhibited a threshold effect as a function of initial host density; the threshold value was increased to a higher initial host density in the presence of parasitoids. Models of host self-limitation were fitted to the data, with the generalized Beverton-Holt model that incorporates a threshold effect providing the best fit, and the Ricker model with no threshold providing a very poor fit to the data.

Ancillary