Possible Involvement of ERK 1/2 in UVA-Induced Melanogenesis in Cultured Normal Human Epidermal Melanocytes

Authors


Address reprint requests to Naoki Matsuda, Ph.D., Radioisotope Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. E-mail: nuric@net.nagasaki-u.ac.jp

Abstract

UV-induced melanogenesis is a well known physiological response of human skin exposed to solar radiation; however, the signaling molecules involved in the stimulation of melanogenesis in melanocytes following UV exposure remain unclear. In this study we induced melanogenesis in vitro in normal human epidermal melanocytes using a single irradiation with UVA at 1 kJ/m2 and examined the potential involvement of mitogen-activated protein kinases (MAPK) as UVA-responsive signaling molecules in those cells. UVA irradiation did not affect the proliferation of melanocytes, but it did increase tyrosinase mRNA expression, which reached a maximum level 4 hr after UVA irradiation. The amount of tyrosinase protein, as quantitated by immunoblotting, was also increased at 24 hr following UVA irradiation. Among the MAPK examined, extracellular signal-related kinase (ERK) 1/2 was phosphorylated within 15 min of UVA irradiation, but no such phosphorylation was observed for c-Jun N-terminal kinases (JNK) or p38. Accordingly, the activity of ERK1/2 was also increased shortly after UVA irradiation. These responses of ERK1/2 to UVA irradiation were markedly inhibited when cells were pre-treated with N-acetyl-l-cysteine, an antioxidant, or with suramin, a tyrosine kinase receptor inhibitor. The formation of (6-4)photoproducts or cyclobutane pyrimidine dimers was not detected in cellular DNA after UVA irradiation. These findings suggest that a single UVA irradiation-induced melanogenesis is associated with the activation of ERK1/2 by upstream signals that originate from reactive oxygen species or from activated tyrosine kinase receptors, but not from damaged DNA.

Ancillary