• 1
    Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965;37: 614636
  • 2
    Wynford-Thomas D. Cellular senescence and cancer. J Pathol 1999;187: 100111DOI: 10.1002/(SICI)1096-9896(199901)187:1<100::AID-PATH236>3.3.CO;2-K
  • 3
    Artandi SE, DePinho RA. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 2000;10: 3946
  • 4
    Sherr CJ. The INK4a/ARF network in tumour suppression. Nature Rev Mol Cell Biol 2001;2: 731737
  • 5
    Blackburn EH. Telomere states and cell fates. Nature 2000;408: 5356
  • 6
    Bodnar AG, Quellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtensteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279: 349352
  • 7
    Todaro GJ, Green H. Serum albumin supplemented medium for long term cultivation of mammalian fibroblast strains. Proc Soc Exp Biol Med 1964;116: 688692
  • 8
    Ramirez RD, Morales CP, Herbert B-S, Rohde JM, Passons C, Shay JW, Wright WE. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 2001;15: 398403
  • 9
    Röhme D. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 1981;78: 50095013
  • 10
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997;88: 593602
  • 11
    Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opinion Cell Biol 2001;13: 738747
  • 12
    Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998;1378: F115F177
  • 13
    Sharpless NE, DePinho RA. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 1999;9: 2230
  • 14
    Rocco JW, Sidransky D. p16 (MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 2001;264: 4255
  • 15
    Hayward N. New developments in melanoma genetics. Curr Oncol Rep 2000;2: 300306
  • 16
    Atadja P, Wong H, Garkavtsev I, Veillette C, Riabowol K. Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 1995;92: 83488352
  • 17
    Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 1996;93: 1374213747
  • 18
    Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F. Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 1996;13: 20972104
  • 19
    England NL, Cuthbert AP, Trott DA, Jezzard S, Nobori T, Carson DA, Newbold RF. Identification of human tumour suppressor genes by monochromosome transfer: rapid growth arrest mapped to 9p21 is mediated solely by the cyclin-D-dependent kinase inhibitor gene, CDKN2A (p16INK4A). Carcinogenesis 1996;17: 15671575
  • 20
    Vogt M, Haggblom C, Yeargin J, Christiansen-Weber T, Haas M. Independent induction of senescence by p16INK4a and p21CIP1. in spontaneously immortalized human fibroblasts. Cell Growth Different 1998;9: 139146
  • 21
    Sharpless NE, Bardeesy N, Lee K-H, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001;413: 8691DOI: 10.1038/35092592
  • 22
    Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001;413: 8386DOI: 10.1038/35092584
  • 23
    Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997;91: 649659
  • 24
    Serrano M, Lee H-W, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996;85: 2737
  • 25
    Jacobs JJL, Kleboom K, Marino S, DePinho RA, Van Lohuizen M. The oncogene and Polycomb group gene bmi-1 regulates cell proliferation and senescence through the Ink4a locus. Nature 1999;397: 164168
  • 26
    Wei W, Hemmer RM, Sedivy JM. Role of p14ARF in replicative and induced senescence of human fibroblasts. Mol Cell Biol 2001;21: 67486757
  • 27
    Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both RB/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998;396: 8488
  • 28
    Eisinger M, Marko O. Selective proliferation of normal human melanocytes in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA 1982;79: 20182022
  • 29
    Gilchrest BA, Vrabel MA, Flynn E, Szabó G. Selective cultivation of human melanocytes from newborn and adult epidermis. J Invest Dermatol 1984;96: 370376
  • 30
    Bennett DC, Bridges K, McKay IA. Clonal separation of mature melanocytes from premelanocytes in a diploid human cell strain: spontaneous and induced pigmentation of premelanocytes. J Cell Sci 1985;77: 167183
  • 31
    Graeven U, Herlyn M. In vitro growth patterns of normal human melanocytes and melanocytes from different stages of melanoma progression. J Immunotherapy 1992;12: 199202
  • 32
    Medrano EE, Yang F, Boissy R, Farooqui J, Shah V, Matsumoto K, Nordlund JJ, Park H-Y. Terminal differentiation and senescence in the human melanocyte: repression of tyrosine-phosphorylation of the extracellular signal-regulated kinase 2 selectively defines the two phenotypes. Mol Biol Cell 1994;5: 497509
  • 33
    Haddad MM, Xu W, Medrano EE. Aging in epidermal melanocytes. cell cycle genes and melanins. J Invest Dermatol Symp Proc 1998;3: 3640
  • 34
    Haddad MM, Xu W, Schwahn DJ, Liao F, Medrano EE. Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16INK4A and p27KIP1 to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes. Exp Cell Res 1999;253: 561572
  • 35
    Bandyopadhyay D, Timchenko N, Suwa T, Hornsby PJ, Campisi J, Medrano EE. The human melanocyte. a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells. Exp Gerontol 2001;36: 12651275
  • 36
    Halaban R, Pomerantz SH, Marshall S, Lambert DT, Lerner AB. Regulation of tyrosinase in human melanocytes grown in culture. J Cell Biol 1983;97: 480488
  • 37
    Schwahn DJ, Xu W, Herrin AB, Bales ES, Medrano EE. Tyrosine levels regulate the melanogenic response to alpha-melanocyte-stimulating hormone in human melanocytes: implications for pigmentation and proliferation. Pigment Cell Res 2001;14: 3239
  • 38
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995;92: 93639367
  • 39
    Prota G, Hu DN, Vincensi MR, McCormick SA, Napolitano A. Characterization of melanins in human irides and cultured uveal melanocytes from eyes of different colors. Exp Eye Res 1998;67: 293299
  • 40
    Swope VB, Medrano EE, Smalara D, Abdel-Malek ZA. Long-term proliferation of human melanocytes is supported by the physiologic mitogens alpha-melanotropin, endothelin-1, and basic fibroblast growth factor. Exp Cell Res 1995;217: 453459
  • 41
    Halaban R, Cheng E, Smicun Y, Germino J. Deregulated E2F transcriptional activity in autonomously growing melanoma cells. J Exp Med 2000;191: 10051016
  • 42
    Medrano EE, Haddad M, Xu W. Signal transduction, the cell cycle and the role of melanins in melanocyte aging. In: Bohr VA, Clark BFC, Stevnsner T. Alfred Benzon Symposium 44. Molecular Biology of Aging, Munksgaard, Copenhagen; 1999 pp. 354–361
  • 43
    Bandyopadhyay D, Medrano EE. Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1. Ann N Y Acad Sci 2000;908: 7184
  • 44
    Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 2000;35: 317329
  • 45
    Sviderskaya EV, Hill SP, Evans-Whipp TJ, Chin L, Orlow SJ, Easty DJ, Cheong SC, Beach D, DePinho RA, Bennett DC. p16Ink4a in melanocyte senescence and differentiation. J Natl Cancer Inst 2002;94: 446454
  • 46
    Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower LA. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002; 415: 4553
  • 47
    Botchkareva NV, Khlgatian M, Longley BJ, Botchkarev VA, Gilchrest BA. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J;200: 645658
  • 48
    Le Poole IC, Boissy RE, Sarangarajan R, Chen J, Forristal JJ, Sheth P, Westerhof W, Babcock G, Das PK, Saelinger CB. PIG3V, an immortalized human vitiligo melanocyte cell line, expresses dilated endoplasmic reticulum. In Vitro Cell Dev Biol Anim 2000;36: 309319
  • 49
    Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jimenez L, Mila M, Kefford RF. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 2002;20: 55435547
  • 50
    Rizos H, Darmanian AP, Holland EA, Mann GJ, Kefford RF. Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J Biol Chem 2001;276: 4142441434
  • 51
    Keller-Melchior R, Schmidt R, Piepkorn M. Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions. J Invest Dermatol 1998;110: 932938
  • 52
    Hu F. Aging of melanocytes. J Invest Dermatol 1979;73: 7079
  • 53
    Glaessl A, Bosserhoff AK, Buettner R, Hohenleutner U, Landthaler M, Stolz W. Increase in telomerase activity during progression of melanocytic cells from melanocytic naevi to malignant melanomas. Arch Dermatol Res 1999;291: 8187DOI: 10.1007/s004030050387
  • 54
    Herlyn M, Thurin J, Balaban G, Bennicelli JL, Herlyn D, Elder DE, Bondi E, Guerry D, Nowell P, Clark WH, Koprowski H. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 1985;45: 56705676
  • 55
    Halaban R, Ghosh S, Duray P, Kirkwood JM, Lerner AB. Human melanocytes cultured from nevi and melanomas. J Invest Dermatol 1986;87: 95101
  • 56
    Easty DJ, Bennett DC. Protein tyrosine kinases in malignant melanoma. Melanoma Res 2000;10: 401411
  • 57
    Halachmi S, Gilchrest BA. Update on genetic events in the pathogenesis of melanoma. Curr Opinion Oncol 2001;13: 129136
  • 58
    Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci USA 2002;99: 389394
  • 59
    Imokawa G, Yada Y, Morisaki N, Kimura M. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. Biochem J 1998;330: 12351239
  • 60
    Sturm RA, Satyamoorthy K, Meier F, Gardiner BB, Smit DJ, Vaidya B, Herlyn M. Osteonectin/SPARC induction by ectopic beta(3) integrin in human radial growth phase primary melanoma cells. Cancer Res 2002;62: 226232
  • 61
    Ledda F, Bravo AI, Adris S, Bover L, Mordoh J, Podhajcer OL. The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. J Invest Dermatol 1997;108: 210214
  • 62
    Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev 2000;14: 15531577
  • 63
    Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 2001;10: 693698
  • 64
    Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, Vervish A, Trouche D, Cabon F, Harel-Bellan A. CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene 2000;19: 24302437