• 1
    Hermansky F, Pudlak P. Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: Report of two cases with histochemical studies. Blood 1959;14: 162169
  • 2
    Shotelersuk V, Gahl WA. Hermansky–Pudlak syndrome: models for intracellular vesicle formation. Mol Genet Metab 1998;65: 8596
  • 3
    Spritz RA. Hermansky–Pudlak syndrome and pale ear: melanosome-making for the mellenium. Pigment Cell Res 2000;13: 1520
  • 4
    King RA, Hearing VJ, Creel DJ, Oetting WS. Albinism. In: ScriverCR, BeaudetAL, SlyWS, ValleDL, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn, Vol. 4. New York: McGraw-Hill; 1995. pp 55875628
  • 5
    Gahl WA, Brantly M, Kaiser-Kupfer MI, Iwata F, Hazelwood S, Shotelersuk V, Duffy LF, Kuehl EM, Troendle J, Bernardini I. Genetic defects and clinical characteristics of patients with a form of oculocutaneous albinism (Hermansky–Pudlak syndrome). N Engl J Med 1998;338: 12581264
  • 6
    Huizing M, Anikster Y, Gahl WA. Hermansky–Pudlak syndrome and related disorders of organelle formation. Traffic 2000;1: 823835
  • 7
    Huizing M, Anikster Y, Gahl WA. Hermansky–Pudlak syndrome and Chediak–Higashi syndrome: disorders of vesicle formation and trafficking. Throm Haemostasis 2001;26: 233245
  • 8
    Huizing M, Gahl WA. Disorders of vesicles of lysosomal lineage: the Hermansky–Pudlak syndromes. Curr Mol Med 2002;2: 451467
  • 9
    Summers CG, Knobloch WH, Witkop CJ, King RA. Hermansky–Pudlak syndrome: ophthalmic findings. Ophthalmology 1988;95: 545554
  • 10
    Iwata F, Reed GF, Caruso RC, Kuehl EM, Gahl WA, Kaiser-Kupfer MI. Correlation of visual acuity and ocular pigmentation with the 16-bp duplication in the HPS-1 gene of Hermansky–Pudlak syndrome, a form of albinism. Ophthalmology 2000;107: 783789
  • 11
    Toro J, Turner M, Gahl WA. Dermatologic manifestations of Hermansky–Pudlak syndrome in patients with and without a 16-base pair duplication in the HPS1 gene. Arch Dermatol 1999; 135: 774780
  • 12
    Witkop CJ, Krumwiede M, Sedano H, White JG. Reliability of absent platelet dense bodies as a diagnostic criterion for Hermansky–Pudlak syndrome. Am J Hematol 1987;26: 305311
  • 13
    Witkop CJ, Wolfe LS, Cal SX, White JG, Townsend D, Keenan KM. Elevated urinary dolichol excretion in the Hermansky–Pudlak syndrome: indicator of lysosomal dysfunction. Am J Med 1987;82: 463470
  • 14
    Garay SM, Gardella JE, Fazzini EP, Goldring RM. Hermansky–Pudlak syndrome: pulmonary manifestations of a ceroid storage disorder. Am J Med 1979;66: 737747
  • 15
    Harmon KR, Witkop CJ, White JG, King RA, Peterson M, Moore D, Tashjian J, Marinelli WA, Bitterman PB. Pathogenesis of pulmonary fibrosis: platelet-derived growth factor precedes structural alterations in the Hermansky–Pudlak syndrome. J Laboratory Clin Med 1994;123: 617627
  • 16
    Brantly M, Avila NA, Shotelersuk V, Lucero C, Huizing M, Gahl WA. Pulmonary function and high-resolution CT findings in patients with an inherited form of pulmonary fibrosis, Hermansky–Pudlak syndrome, due to mutations in HPS-1. Chest 2000;117: 129136
  • 17
    Schinella RA, Greco MA, Cobert BL, Denmark LW, Cox RP. Hermansky–Pudlak syndrome with granulomatous colitis. Ann Intern Med 1980;92: 2023
  • 18
    Mahadeo R, Markowitz J, Fisher S, Daum F. Hermansky–Pudlak syndrome with granulomatous colitis in children. J Pediatr 1991; 118: 904906
  • 19
    Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989;5: 483525
  • 20
    Lemmon SK, Traub LM. Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol 2000;12: 457466
  • 21
    Mullins C, Bonifacino JS. The molecular machinery for lysosome biogenesis. Bioessays 2001;23: 333343
  • 22
    Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, biogenesis. Microbiol Rev 1990;54: 266292
  • 23
    Bankaitis VA, Johnson LM, Emr SD. Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci USA 1986;83: 90759079
  • 24
    Rothman JH, Stevens TH. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 1986;47: 10411051
  • 25
    Conibear E, Stevens TH. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim Biophys Acta 1998; 1404: 211330
  • 26
    Bonangelino CJ, Chavez EM, Bonifacino JS. Genomic screen for vacuolar protein sorting genes in Saccaromyces cerevisiae. Mol Biol Cell 2002;13: 24862501
  • 27
    Jones EW. Proteinase mutants of Saccharomyces cerevisiae. Genetics 1977;85: 2333
  • 28
    Burd CG, Babst M, Emr SD. Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking. Semin Cell Dev Biol 1998;9: 527533
  • 29
    Cooper AA, Stevens TH. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 1996;133: 529541
  • 30
    Bryant NJ, Stevens TH. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 1998;62: 230247
  • 31
    Raymond C, Howald-Stevenson I, Vater C, Stevens T. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 1992;3: 13891402
  • 32
    Rieder SE, Banta LM, Kohrer K, McCaffery JM, Emr SD. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell 1996;7: 985999
  • 33
    Conibear E, Stevens TH. Vps52p, vps53p, and vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 2000;11: 305323
  • 34
    Seaman MN, McCaffery JM, Emr SD. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 1998;142: 665681
  • 35
    Rieder SE, Emr SD. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell 1997;8: 23072327
  • 36
    Peterson MR, Emr SD. The class C vps complex functions at multiple stages of the vacuolar transport pathway. Traffic 2001;2: 476486
  • 37
    Piper RC, Bryant NJ, Stevens TH. The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 1997;138: 531545
  • 38
    Cowles CR, Snyder WB, Burd CG, Emr SD. Novel Golgi to vacuole delivery pathway in yeast. identification of a sorting determinant and required transport component. EMBO J 1997;16: 27692782
  • 39
    Cowles CR, Odorizzi G, Payne GS, Emr SD. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 1997;91: 109118
  • 40
    Stepp JD, Huang K, Lemmon SK. The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J Cell Biol 1997;139: 17611774
  • 41
    Wada Y, Nakamura N, Ohsumi Y, Hirata A. Vam3p, a new member of syntaxin related protein, is required for vacuolar assembly in the yeast Saccharomyces cerevisiae. J Cell Sci 1997;110: 12991306
  • 42
    Nakamura N, Hirata A, Ohsumi Y, Wada Y. Vam2/vps41p and vam6/vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae. J Biol Chem 1997;272: 1134411349
  • 43
    Nothwehr SF, Conibear E, Stevens TH. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J Cell Biol 1995;129: 3546
  • 44
    Schimmoller F, Riezman H. Involvement of ypt7p, a small GTPase, in traffic from late endosome to the vacuole in yeast. J Cell Sci 1993;106: 823830
  • 45
    Phillips JP, Forrest HS. Ommochromes and Pteridines. In: AshburnerM, WrightTRF, eds. Genetics and Biology of Drosophila, Vol. 2. New York: Academic Press; 1980. pp. 541617
  • 46
    Lindsley D, Zimm GG. The Genome of Drosophila melanogaster. San Diego, CA: Academic Press; 1992.
  • 47
    Lloyd V, Ramaswami M, Krämer H. Not just pretty eyes: Drosophila eye-colour mutations and lysosomal delivery. Trends Cell Biol 1998;8: 257259
  • 48
    Ooi CE, Moreira JE, Dell'Angelica EC, Poy G, Wassarman DA, Bonifacino JS. Altered expression of a novel adaptin leads to defective pigment granule biogenesis in the Drosophila eye color mutant garnet. EMBO J 1997;16: 45084518
  • 49
    Simpson F, Peden AA, Christopoulou L, Robinson MS. Characterization of the adaptor-related protein complex, AP-3. J Cell Biol 1997;137: 835845
  • 50
    Dell'Angelica EC, Ohno H, Ooi CE, Rabinovich E, Roche KW, Bonifacino JS. AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J 1997;16: 917928
  • 51
    Simpson F, Bright NA, West MA, Newman LS, Darnell RB, Robinson MS. A novel adaptor-related protein complex. J Cell Biol 1996;133: 749760
  • 52
    Mullins C, Hartnell LM, Wassarman DA, Bonifacino JS. Defective expression of the mu3 subunit of the AP-3 adaptor complex in the Drosophila pigmentation mutant carmine. Mol General Genet 1999;262: 401412
  • 53
    Mullins C, Hartnell LM, Bonifacino JS. Distinct requirements for the AP-3 adaptor complex in pigment granule and synaptic vesicle biogenesis in Drosophila melanogaster. Mol General Genet 2000;263: 100310014
  • 54
    Warner TS, Sinclair DA, Fitzpatrick KA, Singh M, Devlin RH, Honda BM. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking. Genome 1998;41: 236243
  • 55
    Shestopal SA, Makunin IV, Belyaeva ES, Ashburner M, Zhimulev IF. Molecular characterization of the deep orange (dor) gene of Drosophila melanogaster. Mol General Genet 1997;253: 642648
  • 56
    Sevrioukov EA, He JP, Moghrabi N, Sunio A, Kramer H. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Mol Cell 1999;4: 479486
  • 57
    Wurmser AE, Sato TK, Emr SD. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the ypt7 GTPase to SNARE-dependent docking and fusion. J Cell Biol 2000;151: 551562
  • 58
    Rehling P, Darsow T, Katzmann DJ, Emr SD. Formation of AP-3 transport intermediates requires vps41 function. Nat Cell Biol 1999;1: 346353
  • 59
    McVey Ward D, Radisky D, Scullion MA, Tuttle MS, Vaughn M, Kaplan J. hVPS41 is expressed in multiple isoforms and can associate with vesicles through a RING-H2 finger motif. Exp Cell Res 2001;267: 126134
  • 60
    Swank RT, Novak EK, McGarry MP, Rusiniak ME, Feng L. Mouse models of Hermansky Pudlak syndrome: a review. Pigment Cell Res 1998;11: 6080
  • 61
    Oh J, Bailin T, Fukai K, Feng GH, Ho L, Mao JI, Frenk E, Tamura N, Spritz RA. Positional cloning of a gene for Hermansky–Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet 1996;14: 300306
  • 62
    Gardner JM, Wildenberg SC, Keiper NM, Novak EK, Rusiniak ME, Swank RT, Puri N, Finger JN, Hagiwara N, Lehman AL, Gales TL, Bayer ME, King RA, Brilliant MH. The mouse pale ear (ep) mutation is the homologue of human Hermansky–Pudlak syndrome. Proc Natl Acad Sci USA 1997;94: 92389243
  • 63
    Feng GH, Bailin T, Oh J, Spritz RA. Mouse pale ear (ep) is homologous to human Hermansky–Pudlak syndrome and contains a rare ‘AT-AC’ intron. Hum Mol Genet 1997;6: 793797
  • 64
    Suzuki T, Li W, Zhang Q, Karim A, Novak EK, Sviderskaya EV, Hill SP, Bennett DC, Levin AV, Nieuwenhuis HK, Fong CT, Castellan C, Miterski B, Swank RT, Spritz RA. Hermansky–Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene. Nat Genet 2002;30: 321324
  • 65
    Lane PW, Green EL. Pale ear and light ear in the house mouse. Mimic mutations in linkage groups XII and XVII. J Hered 1967;58: 1720
  • 66
    LaVail MM, Sidman RL. C57BL-6J mice with inherited retinal degeneration. Arch Ophthalmol 1974;91: 394400
  • 67
    LaVail JH, Nixon RA, Sidman RL. Genetic control of retinal ganglion cell projections. J Comp Neurol 1978;182: 399421
  • 68
    Meisler MH, Wanner L, Strahler J. Pigmentation and lysosomal phenotypes in mice doubly homozygous for both light-ear and pale-ear mutant alleles. J Hered 1984;75: 103106
  • 69
    Oh J, Liu ZX, Feng GH, Raposo G, Spritz RA. The Hermansky–Pudlak syndrome (HPS) protein is part of a high molecular weight complex involved in biogenesis of early melanosomes. Hum Mol Genet 2000;9: 375385
  • 70
    Martorana PA, Brand T, Gardi C, Van Even P, De Santi MM, Calzoni P, Marcolongo P, Lungarella G. The pallid mouse. A model of genetic alpha 1-antitrypsin deficiency. Laboratory Invest 1993;68: 233241
  • 71
    Theriault LL, Hurley LS. Ultrastructure of developing melanosomes in C57 black and pallid mice. Dev Biol 1970;23: 261275
  • 72
    McGarry MP, Reddington M, Novak EK, Swank RT. Survival and lung pathology of mouse models of Hermansky–Pudlak syndrome and Chediak–Higashi syndrome. Proc Soc Exp Biol Medical 1999;220: 162168
  • 73
    Ito M, Hashimoto K, Organisciak DT. Ultrastructural, histochemical and biochemical studies of the melanin metabolism in pallid mouse eye. Curr Eye Res 1982;2: 1328
  • 74
    Huang L, Kuo YM, Gitschier J. The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nat Genet 1999;23: 329332
  • 75
    McBride HM, Rybin V, Murphy C, Giner A, Teasdale R, Zerial M. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 1999;98: 377386
  • 76
    Falcon-Perez JM, Dell'Angelica EC. The pallidin (Pldn) gene and the role of SNARE proteins in melanosome biogenesis. Pigment Cell Res 2002;15: 8286
  • 77
    Marks MS, Seabra MC. The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2001;2: 738748
  • 78
    Falcon-Perez JM, Starcevic M, Gautam R, Dell'Angelica EC. BLOC-1, A novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet dense granules. J Biol Chem 2002;277: 2819128199
  • 79
    Zhang Q, Li W, Novak EK, Karim A, Mishra VS, Kingsmore SF, Roe BA, Suzuki T, Swank RT. The gene for the muted (mu) mouse, a model for Hermansky–Pudlak syndrome, defines a novel protein which regulates vesicle trafficking. Hum Mol Genet 2002;11: 697706
  • 80
    Schafer DA. Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 2002;14: 7681
  • 81
    Lorra C, Huttner WB. The mesh hypothesis of Golgi dynamics. Nat Cell Biol 1999;1: E113E115
  • 82
    Kantheti P, Qiao X, Diaz ME, Peden AA, Meyer GE, Carskadon SL, Kapfhamer D, Sufalko D, Robinson MS, Noebels JL, Burmeister M. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 1998;21: 111122
  • 83
    Feng L, Seymour AB, Jiang S, To A, Peden AA, Novak EK, Zhen L, Rusiniak ME, Eicher EM, Robinson MS, Gorin MB, Swank RT. The beta3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky–Pudlak syndrome and night blindness. Hum Mol Genet 1999;8: 323330
  • 84
    Swank RT, Reddington M, Howlett O, Novak EK. Platelet storage pool deficiency associated with inherited abnormalities of the inner ear in the mouse pigment mutants muted and mocha. Blood 1991;78: 20362044
  • 85
    Miller CL, Burmeister M, Stevens KE. Hippocampal auditory gating in the hyperactive mocha mouse. Neurosci Lett 1999;276: 5760
  • 86
    Newman LS, McKeever MO, Okano HJ, Darnell RB. Beta-NAP, a cerebellar degeneration antigen, is a neuron-specific vesicle coat protein. Cell 1995;82: 773783
  • 87
    Balkema GW, Mangini NJ, Pinto LH. Discrete visual defects in pearl mutant mice. Science 1983;19: 10851087
  • 88
    Suzuki T, Li W, Zhang Q, Novak EK, Sviderskaya EV, Wilson A, Bennett DC, Roe BA, Swank RT, Spritz RA. The gene mutated in cocoa mice, carrying a defect of organelle biogenesis, is a homologue of the human Hermansky–Pudlak syndrome-3 gene. Genomics 2001;78: 3037
  • 89
    Oberhauser AF, Fernandez JM. A fusion pore phenotype in mast cells of the ruby-eye mouse. Proc Natl Acad Sci USA 1996;93: 1434914354
  • 90
    Novak EK, Reddington M, Zhen L, Stenberg PE, Jackson CW, McGarry MP, Swank RT. Inherited thrombocytopenia caused by reduced platelet production in mice with the gunmetal pigment gene mutation. Blood 1995;85: 17811789
  • 91
    Swank RT, Jiang SY, Reddington M, Conway J, Stephenson D, McGarry MP, Novak EK. Inherited abnormalities in platelet organelles and platelet formation and associated altered expression of low molecular weight guanosine triphosphate-binding proteins in the mouse pigment mutant gunmetal. Blood 1993;81: 26262635
  • 92
    Weiss HJ, Witte LD, Kaplan KL, Lages BA, Chernoff A, Nossel HL, Goodman DS, Baumgartner HR. Heterogeneity in storage pool deficiency. studies on granule-bound substances in 18 patients including variants deficient in alpha-granules, platelet factor 4, beta-thromboglobulin, and platelet-derived growth factor. Blood 1979;54: 12961319
  • 93
    Detter JC, Zhang Q, Mules EH, Novak EK, Mishra VS, Li W, McMurtrie EB, Tchernev VT, Wallace MR, Seabra MC, Swank RT, Kingsmore SF. Rab geranylgeranyl transferase α mutation in the gunmetal mouse reduces Rab27 prenylation and platelet synthesis. Proc Natl Acad Sci USA 2000;97: 41444149
  • 94
    Desnoyers L, Anant JS, Seabra MC. Geranylgeranylation of Rab proteins. Biochem Soc Trans 1996;24: 699703
  • 95
    Schimmoller F, Simon I, Pfeffer SR. Rab GTPases, directors of vesicle docking. J Biol Chem 1998;273: 2216122164
  • 96
    Swank RT, Reddington M, Novak EK. Inherited prolonged bleeding time and platelet storage pool deficiency in the subtle gray (sut) mouse. Laboratory Anim Sci 1996;46: 5660
  • 97
    Huizing M, Anikster Y, White JG, Gahl WA. Characterization of the murine gene corresponding to human Hermansky–Pudlak syndrome type 3: exclusion of the Subtle gray (sut) locus. Mol Genet Metab 2001;74: 217225
  • 98
    Swank RT, Sweet HO, Davisson MT, Reddington M, Novak EK. Sandy: a new mouse model for platelet storage pool deficiency. Genet Res 1991;58: 5162
  • 99
    Gwynn B, Ciciotte SL, Hunter SJ, Washburn LL, Smith RS, Andersen SG, Swank RT, Dell'Angelica EC, Bonifacino JS, Eicher EM, Peters LL. Defects in the cappuccino (cno) gene on mouse chromosome 5 and human 4p cause Hermansky–Pudlak syndrome by an AP-3-independent mechanism. Blood 2000;96: 42274235
  • 100
    Shotelersuk V, Dell'Angelica EC, Hartnell L, Bonifacino JS, Gahl WA. A new variant of Hermansky–Pudlak syndrome due to mutations in a gene responsible for vesicle formation. Am J Med 2000;108: 423427
  • 101
    Huizing M, Scher CD, Strovel E, Fitzpatrick DL, Hartnell L, Anikster Y, Gahl WA. Nonsense mutations in ADTB3A cause complete deficiency of the β3A subunit of adaptor complex-3 and severe Hermansky–Pudlak syndrome type 2. Pediatr Res 2001; 51: 150158
  • 102
    Huizing M, Anikster Y, Fitzpatrick DL, Jeong AB, D'Souza M, Rausche M, Kaiser-Kupfer MI, White JG, Gahl WA. Hermansky–Pudlak syndrome type 3 in Ashkenazi Jews and other non-Puerto Rican patients with hypopigmentation and platelet storage pool deficiency. Am J Hum Genet 2001;69: 10221032
  • 103
    Witkop CJ, Babcock MN, Rao GHR, Gaudier F, Summers CG, Shanahan F, Harmon KR, Townsend DW, Sedano HO, King RA, Cal SX, White JG. Albinism and Hermansky–Pudlak syndrome in Puerto Rico. Bol Asoc Med P Rico-Agosto 1990;82: 333339
  • 104
    Boissy RE, Zhao Y, Gahl WA. Altered protein localization in melanocytes from Hermansky–Pudlak syndrome. support for the role of the HPS gene product in intracellular trafficking. Laboratory Invest 1998;78: 10371048
  • 105
    Sarangarajan R, Budev A, Zhao Y, Gahl WA, Boissy RE. Abnormal translocation of tyrosinase and tyrosinase-related protein 1 in cutaneous melanocytes of Hermansky–Pudlak syndrome and in melanoma cells transfected with anti-sense HPS1 cDNA. J Invest Dermatol 2001;117: 641646
  • 106
    Dell'Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS. Altered trafficking of lysosomal proteins in Hermansky–Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol Cell 1999;3: 1121
  • 107
    Huizing M, Saranjarajan R, Strovel E, Zhao Y, Gahl WA, Boissy RE. AP-3-dependent vesicles carry tyrosinase, but not TRP-1, in cultured human melanocytes. Mol Biol Cell 2001;12: 20752085
  • 108
    Anikster Y, Huizing M, White J, Bale S, Gahl WA, Toro J. Mutation of a new gene causes a unique form of Hermansky–Pudlak syndrome in a genetic isolate of central Puerto Rico. Nature Genet 2001;28: 376380
  • 109
    Van Bokhoven H, Van Den Hurk JA, Bogerd L, Philippe C, Gilgenkrantz S, De Jong P, Ropers HH, Cremers FP. Cloning and characterization of the human choroideremia gene. Hum Mol Genet 1994;3: 10411046
  • 110
    White JG. Ultrastructural studies of the gray platelet syndrome. Am J Pathol 1979;95: 445462
  • 111
    Boissy RE, Nordlund JJ. Molecular basis of congenital hypopigmentary disorders in humans: a review. Pigment Cell Res 1997;10: 1224
  • 112
    Introne W, Boissy RE, Gahl WA. Clinical, molecular, and cell biological aspects of Chediak–Higashi syndrome. Mol Genet Metab 1999;68: 283303
  • 113
    Ward DM, Shiflett SL, Kaplan J. Chediak–Higashi syndrome: a clinical and molecular view of a rare lysosomal storage disorder. Curr Mol Med 2002;2: 469477
  • 114
    Windhorst DB, Zelickson AS, Good RA. Chediak–Higashi syndrome: hereditary gigantism of cytoplasmic organelles. Science 1966;151: 8183
  • 115
    Zhao H, Boissy YL, Abdel-Malek Z, King RA, Nordlund JJ, Boissy RE. On the analysis of the pathophysiology of Chediak–Higashi syndrome: defects expressed by cultured melanocytes. Laboratory Invest 1994;71: 2534
  • 116
    Barbosa MD, Nguyen QA, Tchernev VT, Ashley JA, Detter JC, Blaydes SM, Brandt SJ, Chotai D, Hodgman C, Solari RC, Lovett M, Kingsmore SF. Identification of the homologous beige and Chediak–Higashi syndrome genes. Nature 1996;382: 262265
  • 117
    Griscelli C, Durandy A, Guy-Grand D, Daguillard F, Herzog C, Prunieras M. A syndrome associating partial albinism and immunodeficiency. Am J Med 1978;65: 691702
  • 118
    Menasche G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, Wulffraat N, Bianchi D, Fischer A, Le Deist F, De Saint Basile G. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000;25: 173176
  • 119
    Elejalde BR, Holguin J, Valencia A, Gilbert EF, Molina J, Marin G, Arango LA. Mutations affecting pigmentation in man. I. Neuroectodermal melanolysosomal disease. Am J Med Genet 1979;3: 6580
  • 120
    Anikster Y, Huizing M, Anderson PD, Fitzpatrick DL, Klar A, Gross-Kieselstein E, Berkun Y, Shazberg G, Gahl WA, Hurvitz H. Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, Not MYO5A. Am J Hum Genet 2002;71: 407414
  • 121
    Wilson SM, Yip R, Swing DA, O'Sullivan TN, Zhang Y, Novak EK, Swank RT, Russell LB, Copeland NG, Jenkins NA. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci USA 2000;97: 79337938
  • 122
    Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 1991;349: 709713
  • 123
    Matesic LE, Yip R, Reuss AE, Swing DA, O'Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci USA 2001;98: 1023810243
  • 124
    Hume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, Griffiths GM, Seabra MC. The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic 2002;3: 193202
  • 125
    Hermos CR, Huizing M, Kaiser-Kupfer MI, Gahl WA. Hermansky-Pudlak syndrome type 1: Gene organization, new mutations, and clinical/molecular review of non-Puerto Rican cases. Hum Mutat 2002: in press
  • 126
    Boehm M, Bonifacino JS. Adaptins: the final recount. Mol Biol Cell 2001;12: 29072920
  • 127
    Dell'Angelica EC, Mullins C, Bonifacino JS. AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 1999;274: 72787285
  • 128
    Hirst J, Bright NA, Rous B, Robinson MS. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 1999;10: 27872802
  • 129
    Huizing M, Didier A, Walenta J, Anikster Y, Gahl WA, Kramer H. Molecular cloning and characterization of human VPS18, VPS 11, VPS16, and VPS33. Gene 2001;264: 241247
  • 130
    Seabra MC, Mules EH, Hume AN. Rab GTPases, intracellular traffic and disease. Trends Mol Med 2002;8: 2330
  • 131
    Pelham HR. SNAREs and the specificity of membrane fusion. Trends Cell Biol 2001;11: 99101
  • 132
    Teng FY, Wang Y, Tang BL. The syntaxins. Genome Biol 2001;2:reviews 3012
  • 133
    Karcher RL, Deacon SW, Gelfand VI. Motor–cargo interactions: the key to transport specificity. Trends Cell Biol 2002;12: 2127
  • 134
    McMaster CR. Lipid metabolism and vesicle trafficking: more than just greasing the transport machinery. Biochem Cell Biol 2001;79: 681692
  • 135
    Blott EJ, Griffiths GM. Secretory lysosomes. Nat Rev Mol Cell Biol 2002;3: 122131
  • 136
    Monck JR, Alvarez de Toledo G, Fernandez JM. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proc Natl Acad Sci USA 1990;87: 78047808
  • 137
    De Camilli P, Emr SD, McPherson PS, Novick P. Phosphoinositides as regulators in membrane traffic. Science 1996;271: 15331539