Get access

Isolation and Developmental Expression of Tyrosinase Family Genes in Xenopus laevis


* Address reprint requests to Hiroaki Yamamoto, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan. E-mail:


The tyrosinase family of genes in vertebrates consists of three related members encoding melanogenic enzymes, tyrosinase (Tyr), tyrosinase-related protein-1 (TRP-1, Tyrp1) and tyrosinase-related protein-2 (Dct, TRP-2, Tyrp2). These proteins catalyze melanin production in pigment cells and play important roles in determining vertebrate coloration. This is the first report examining melanogenic gene expression in pigment cells during embryonic development of amphibians. Xenopus provides a useful experimental system for analyzing molecular mechanisms of pigment cells. However, in this animal little information is available not only about the developmental expression but also about the isolation of pigmentation genes. In this study, we isolated homologues of Tyr, Tyrp1 and Dct in Xenopus laevis (XlTyr, XlTyrp1, and XlDct). We studied their expression during development using in situ hybridization and found that all of them are expressed in neural crest-derived melanophores, most of which migrate through the medial pathway, and in the developing diencephalon-derived retinal pigment epithelium (RPE). Further, XlDct was expressed earlier than XlTyr and XlTyrp1, which suggests that XlDct is the most suitable marker gene for melanin-producing cells among them. XlDct expression was detected in migratory melanoblasts and in the unpigmented RPE. In addition, the expression of XlDct was detected in the pineal organ. The sum of these studies suggests that expression of the tyrosinase family of genes is conserved in pigment cells of amphibians and that using XlDct as a marker gene for pigment cells will allow further study of the developmental mechanisms of pigment cell differentiation using Xenopus.