• 1
    Liu X-Z, Newton VE, Read AP. Waardenburg syndrome type II: phenotypic findings and diagnostic criteria. Am J Med Genet 1995;55: 95100
  • 2
    Epstein DJ, Vekemans M, Gros P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991;67: 767774
  • 3
    Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 1992;355: 635636
  • 4
    Baldwin CT, Hoth CF, Amos JA, Da-Siva EO, Milunsky A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 1992;355: 637638
  • 5
    Tassabehji M, Newton VE, Liu X-Z, Bardy A, Donnai D, Krajewska-Walasek M , Murday V, Norman A, Obersztyn E, Reardon W, Rice JC, Trembath R, Wieacker P, Whiteford M, Winter R, Read AP. The mutation spectrum in Waardenburg syndrome. Hum Mol Genet 1995;4: 21312137
  • 6
    Auerbach R. Analysis of the developmental effects of a lethal mutation in the house mouse. J Exp Zool 1954;127: 305329
  • 7
    Vogan KJ, Epstein DJ, Trasler DG, Gros P. The splotch-delayed (Spd) mouse mutant carries a point mutation within the paired box of the Pax-3 gene. Genomics 1993;17: 364369
  • 8
    Goulding M, Sterrer S, Fleming J, Balling R, Nadeau J, Moore KJ, Brown SDM, Steel KP, Gruss P. Analysis of the Pax-3 gene in the mouse mutant splotch. Genomics 1993;17: 355363
  • 9
    Steel KP, Smith RJH. Normal hearing in Splotch (Sp/+), the mouse homologue of Waardenburg syndrome type 1. Nat Genet 1992;2: 7579
  • 10
    Asher JH, Harrison RW, Morell R, Carey ML, Friedman TB. Effects of Pax3 modifier genes on craniofacial morphology, pigmentation, and viability: a murine model of Waardenburg syndrome variation. Genomics 1996;34: 285298
  • 11
    Tachibana M, Hara Y, Vyas D, Hodgkinson C, Fex J, Grundfast K, Arnheiter H. Cochlear disorder associated with melanocyte anomaly in mice with a transgenic insertional mutation. Mol Cell Neurosci 1992;3: 433445
  • 12
    Tachibana M. Sound needs sound melanocytes to be heard. Pigment Cell Res 1999;12: 344354
  • 13
    Hodgkinson CA, Moore KJ, Nakayama A, Steingrímsson E, Copeland NG, Jenkins NA, Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993;74: 395404
  • 14
    Tachibana M, Perez-Jurado LA, Nakayama A, Hodgkinson CA, Li X, Schneider M, Miki T, Fex J, Francke U, Arnheiter H. Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum Mol Genet 1994;3: 553557
  • 15
    Tachibana M, Takeda K, Nobukuni Y, Urabe K, Long JE, Meyers KA, Aaronson SA, Miki T. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 1996;14: 5054
  • 16
    Planque N, Turque N, Odecamp K, Bailly M, Martin P, Saule S. Expression of the microphthalmia-associated basic helix–loop–helix leucine zipper transcription factor Mi in avian neuroretina cells induces a pigmented phenotype. Cell Growth Different 1999;10: 525536
  • 17
    Tachibana M. MITF: a stream flowing for pigment cells. Pigment Cell Res 2000;13: 230240
  • 18
    McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin Y-L, Ramaswamy S, Avery W, Ding H-F, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 2002;109: 707718
  • 19
    Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 1994;8: 251255
  • 20
    Shibahara S, Yasumoto K, Takahashi K. Genetic regulation of the pigment cell. In: NordlundJJ, BoissyRE, HearingVJ, KingRA, OrtonneJ-R. The Pigmentary System: Physiology and Pathophysiology. New York: Oxford University Press; 1998, pp. 251273
  • 21
    Nobukuni Y, Watanabe A, Takeda K, Skarka H, Tachibana M. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A. Am J Hum Genet 1996;59: 7683
  • 22
    Tachibana M. Evidence to suggest that expression of MITF induces melanocyte differentiation and haploinsufficiency of MITF causes Waardenburg syndrome type 2A. Pigment Cell Res 1997;10: 2533
  • 23
    Amile J, Watkin PM, Tassabehji M, Read AP, Winter RM. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol 1998;7: 1720
  • 24
    Saito H, Yasumoto K, Takeda K, Takahashi K, Fukazaki A, Orikasa S, Shibahara S. Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancer factor 1. J Biol Chem 2002;277: 2878728794
  • 25
    Steingrímsson E, Moore KJ, Lamoreux ML, Ferreé-D'Amaré AR, Burley SK, Zimring DCS, Skow LC, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 1994;8: 256263
  • 26
    Steingrímsson E, Nii A, Fisher DE, Ferreé-D'Amaré AR, McCormic RJ, Russel LB, Burley SK, Ward JM, Jenkins NA, Copeland NG. The semidominant Mib mutation identifies a role for the HLH domain in DNA binding in addition to its role in protein dimerization. EMBO J 1996;15: 62806289
  • 27
    Yajima I, Sato S, Kimura T, Yasumoto K, Shibahara S, Goding CR, Yamamoto H. A L1 element intronic insertion in the black-eyed white (Mitfmibw) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness. Hum Mol Genet 1999;8: 14311441
  • 28
    Fisher E, Scambler P. Human haploinsufficiency – one for sorrow, two for joy. Nat Genet 1994;7: 57
  • 29
    Sánchez-Martín M, Rodríguez-García A, Pérez-Losada J, Sagrera A, Read AP, Sánchez-Garcia I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11: 32313236
  • 30
    Nieto MA, Sargent MG, Wilkinson DG, Cooke J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994;264: 835839
  • 31
    Savagner P, Yamada KM, Thiery JP. The zinc-finger protein Slug causes desmosome dissociation, and initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997;137: 14031419
  • 32
    Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T. The Slug gene is not essential for mesodermal or neural crest development in mice. Dev Biol 1998;198: 277285
  • 33
    Attié T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, Munnich A, Lyonet S. Mutation of the endothelin-receptor B gene in Waardenburg–Hirschsprung disease. Hum Mol Genet 1995;4: 24072409
  • 34
    Syrris P, Carter ND, Patton MA. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg–Hirschsprung disease. Am J Med Genet 1999;87: 6771
  • 35
    Matsushima Y, Shinkai Y, Kobayashi Y, Sakamoto M, Kunieda T, Tachibana M. A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene. Mamm Genome 2002;13: 3035
  • 36
    Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994;79: 12671276
  • 37
    Koide T, Moriwaki K, Uchida K, Mita A, Sagai T, Yonekawa H, Katoh H, Miyashita N, Tsuchiya K, Nielsen TJ, Shiroishi T. A new inbred strain JF1 established from Japanese fancy mouse carrying the classic piebald lethal allele. Mamm Genome 1998;9: 1519
  • 38
    Kikkawa Y, Miura I, Takahama S, Wakana S, Yamazaki Y, Moriwaki K, Shiroishi T, Yonekawa H. Microsatellite database for MSM/Ms and JF1/Ms, molossinus-derived inbred strain. Mamm Genome 2001;12: 750752
  • 39
    Edrey P, Attié T, Amiel J, Pelet A, Eng C, Hofstra RMW, Martelli H, Bidaud C, Munnich A, Lyonett S. Mutations of the endothelin-3 gene in the Waardenburg–Hirschsprung disease (Shah–Waardenburg syndrome). Nat Genet 1996;12: 442444
  • 40
    Hofstra RMW, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg E-J, Stulp RP, Ravenswaaiji-Arts C v, Majjor-Krakauer D, Angrist M, Chakravarti A, Meijers C, Buys CHCM. A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah–Waardenburg syndrome). Nat Genet 1996;12: 445447
  • 41
    Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neuron. Cell 1994;79: 12771285
  • 42
    Lane PW, Liu HM. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered 1984;75: 435439
  • 43
    Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H, Pavan WJ. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol 2001;237: 245257
  • 44
    Puliti A, Prehu MO, Simon-Chazotters D, Ferkdadji L, Peuchmaur M, Gossens M, Guénet JL. A high-resolution genetic map of mouse Chromosome 15 encompassing the Dominant megacolon (Dom) locus. Mamm Genome 1995;6: 763768
  • 45
    Southard-Smith EM, Kos L, Pavan W. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 1998;18: 6064
  • 46
    Herbarth B, Pingault V, Bondurand N, Kuhlbrot K, Hermans-Borgmeyer I, Puliti A, Lemort N, Goosens M, Wegner M. Mutation of the Sry-related Sox10 in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 1998;95: 51615165
  • 47
    Pingault V, Bondurand N, Kuhlbrodt K, Goerich D, Préhu M-O, Puliti A, Herbath B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read A, Wegner M, Goossens M. SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet 1998;18: 171173
  • 48
    Kuhbrodt K, Schmidt C, Sock E, Pingault V, Bondurand N, Gossens M, Wegner M. Functional analysis of Sox10 mutations found in human Waardenburg–Hirschsprung patients. J Biol Chem 1998;273: 2303323038
  • 49
    Touraine RL, Attié-Bitach T, Manceau E, Korsch E, Sarda P, Pigault V, Encha-Razavi F, Pelet A, Augé J, Nivelon-Chevallier A, Holschneider AM, Munnes M, Doerfler W, Goosens M, Munnich A, Vekemans M, Lyonett S. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am J Hum Genet 2000;66: 14961503
  • 50
    Watanabe K, Takeda K, Yasumoto K, Udono T, Saito H, Ikea K, Takasaka T, Takahashi K, Kobayashi T, Tachibana M, Shibahara S. Identification of a distal enhancer for the melanocyte-specific promoter of the MITF gene. Pigment Cell Res 2002;15: 201211
  • 51
    Watanabe A, Takeda K, Ploplis B, Tachibana M. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 1998;18: 283286
  • 52
    Tachibana M. A cascade of genes related to Waardenburg syndrome. J Invest Dermatol Symp Proc 1999;4: 126129
  • 53
    Potterf SB, Furumura M, Dunn KJ, Arnhaiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 2000;107: 16
  • 54
    Bondurand N, Pigault V, Goerich DE, Lemort N, Sock E, Caignec CL, Wegner M, Goossens M. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 2000;13: 19071917
  • 55
    Lee M, Goodall J, Verastegui C, Ballotti R, Goding CR. Direct regulation of the microphthalmia promoter by Sox10 links Waardenburg–Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J Biol Chem 2000;275: 3797837983
  • 56
    Verastegui C, Bille K, Ortonne J-P, Ballotti R. Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J Biol Chem 2000;275: 3075730760
  • 57
    Imokawa G, Yada Y, Kimura M. Signaling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem J 1996;314: 305312
  • 58
    Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne J-P, Ballotti R. Microphthalmia gene product as a signal transducer in cAMP induced differentiation of melanocytes. J Cell Biol 1998;142: 827835
  • 59
    Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000;13: 6069
  • 60
    Englaro W, Rezzonico R, Durand-Clément M, Lallemand D, Ortonne J-P, Ballotti R. Mitogen-activated protein kinase pathway and AP-1 are activated during c-AMP-induced melanogensis in B-16 melanoma cells. J Biol Chem 1995;270: 2431524320
  • 61
    Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. MAP kinase links the transcription factor Microphthalmia to c-Kit signaling in melanocytes. Nature 1998;391: 298301
  • 62
    Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher DE. c-Kit triggers dual phosphorylation and degradation of the essential melanocyte factor Mi. Gene Dev 2000;14: 301312
  • 63
    Khaled M, Larribere L, Bille K, Aberdam E, Ortonne J-P, Balloti R, Bertolotto C. Glycogen synthase kinase 3β is activated by cAMP and plays an active role in the regulation of melanogenesis. J Biol Chem 2002;37: 3369033697
  • 64
    Takeda K, Takemoto C, Kobayashi I, Watanabe A, Nobukuni Y, Fisher DE, Tachibana M. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum Mol Genet 2000;9: 125132
  • 65
    Read A. Waardenburg syndrome. In: KimuraK, SteelKP. Genetics in Otorhinolaryngology. Adv Otorhinolaryngol, Vol 56. Basel: Karger; 2000. pp. 3238