SEARCH

SEARCH BY CITATION

References

  • 1
    Ortonne JP, Bose SK. Vitiligo: where do we stand? Pigment Cell Res 1993;6: 6172
  • 2
    Le Poole IC, Das PK, van den Wijngaard RM, Bos JD, Westerhof W. Review of the etiopathomechanism of vitiligo: a convergence theory. Exp Dermatol 1993;2: 145153
  • 3
    Taieb A. Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment Cell Res 2000;13(Suppl. 8): 4147
  • 4
    Gauthier Y, Cario-Andre M, Lepreux S, Pain C, Taieb A. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br J Dermatol 2003;148: 95101
  • 5
    al Badri AM, Todd PM, Garioch JJ, Gudgeon JE, Stewart DG, Goudie RB. An immunohistological study of cutaneous lymphocytes in vitiligo. J Pathol 1993;170: 149155
  • 6
    Le Poole IC, van den Wijngaard RM, Westerhof W, Dutrieux RP, Das PK. Presence or absence of melanocytes in vitiligo lesions: an immunohistochemical investigation. J Invest Dermatol 1993; 100: 816822
  • 7
    Bizik J, Kankuri E, Ristimäki A, Ta A, Vapaatalo H, Lubitz W, Vaheri A. Cyclooxygenase-2 and plasminogen activation characterize necrosis in clusters of human dermal fibroblasts. Cell Death Diff 2003, in press.
  • 8
    van den Wijngaard RM, Aten J, Scheepmaker A, Le Poole IC, Tigges AJ, Westerhof W, Das PK. Expression and modulation of apoptosis regulatory molecules in human melanocytes: significance in vitiligo. Br J Dermatol 2000;143: 573581
  • 9
    Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D. Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol 2003;120: 4855
  • 10
    Bessou-Touya S, Picardo M, Maresca V, Surleve-Bazeille JE, Pain C, Taieb A. Chimeric human epidermal reconstructs to study the role of melanocytes and keratinocytes in pigmentation and photoprotection. J Invest Dermatol 1998;111: 11031108
  • 11
    Ongenae K, Van Geel N, Naeyaert JM. Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res 2003;16: 90100
  • 12
    Alkhateeb A, Stetler GL, Old W, Talbert J, Uhlhorn C, Taylor M, Fox A, Miller C, Dills DG, Ridgway EC, Bennett DC, Fain PR, Spritz RA. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3-p32.2. Hum Mol Genet 2002;11: 661667
  • 13
    van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest 2000;80: 12991309
  • 14
    Wankowicz-Kalinska A, Van Den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK. Immunopolarization of CD4(+) and CD8(+) T Cells to Type-1-Like is Associated with Melanocyte Loss in Human Vitiligo. Lab Invest 2003;8: 683695
  • 15
    Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 1998;188: 12031208
  • 16
    Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, Ardigo M, Borroni G, Martinetti M, Badulli C, Necker A, Giachino C. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol 2001;117: 326332
  • 17
    Lee D, Lazova R, Bolognia JL. A figurate papulosquamous variant of inflammatory vitiligo. Dermatology 2000;200: 270274
  • 18
    Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 1996;148: 12191228
  • 19
    Musette P, Bachelez H, Flageul B, Delarbre C, Kourilsky P, Dubertret L, Gachelin G. Immune-mediated destruction of melanocytes in halo nevi is associated with the local expansion of a limited number of T cell clones. J Immunol 1999;162: 17891794
  • 20
    Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 2000;192: 16371644
  • 21
    Le Gal FA, Avril MF, Bosq J, Lefebvre P, Deschemin JC, Andrieu M, Dore MX, Guillet JG. Direct evidence to support the role of antigen-specific CD8(+) T cells in melanoma-associated vitiligo. J Invest Dermatol 2001;117: 14641470
  • 22
    van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999;190: 355366
  • 23
    Yu HS, Kao CH, Yu CL. Coexistence and relationship of antikeratinocyte and antimelanocyte antibodies in patients with non-segmental-type vitiligo. J Invest Dermatol 1993;100: 823828
  • 24
    Gilhar A, Zelickson B, Ulman Y, Etzioni A. In vivo destruction of melanocytes by the IgG fraction of serum from patients with vitiligo. J Invest Dermatol 1995;105: 683686
  • 25
    Kemp EH, Waterman EA, Hawes BE, O'Neill K, Gottumukkala RV, Gawkrodger DJ, Weetman AP, Watson PF. The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in vitiligo. J Clin Invest 2002;109: 923930
  • 26
    Norris DA, Kissinger RM, Naughton GM, Bystryn JC. Evidence for immunologic mechanisms in human vitiligo: patients’ sera induce damage to human melanocytes in vitro by complement-mediated damage and antibody-dependent cellular cytotoxicity. J Invest Dermatol 1988;90: 783789
  • 27
    Hertz KC, Gazze LA, Kirkpatrick CH, Katz SI. Autoimmune vitiligo: detection of antibodies to melanin-producing cells. N Engl J Med 1977;297: 634637
  • 28
    Ekwall O, Hedstrand H, Haavik J, Perheentupa J, Betterle C, Gustafsson J, Husebye E, Rorsman F, Kampe O. Pteridin-dependent hydroxylases as autoantigens in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 2000;85: 29442950
  • 29
    Hara I, Takechi Y, Houghton AN. Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med 1995;182: 16091614
  • 30
    Austin LM, Boissy RE, Jacobson BS, Smyth JR Jr The detection of melanocyte autoantibodies in the Smyth chicken model for vitiligo. Clin Immunol Immunopathol 1992;64: 112120
  • 31
    Pedersen LO, Vetter CS, Mingari MC, Andersen MH, thor Straten P, Brocker EB, Becker JC. Differential expression of inhibitory or activating CD94/NKG2 subtypes on MART-1-reactive T cells in vitiligo versus melanoma: a case report. J Invest Dermatol 2002;118: 595599
  • 32
    Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 2002;110: 185192
  • 33
    Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003;4: 350354
  • 34
    Hedstrand H, Ekwall O, Haavik J, Landgren E, Betterle C, Perheentupa J, Gustafsson J, Husebye E, Rorsman F, Kampe O. Identification of tyrosine hydroxylase as an autoantigen in autoimmune polyendocrine syndrome type I. Biochem Biophys Res Commun 2000;267: 456461
  • 35
    Marles LK, Peters EM, Tobin DJ, Hibberts NA, Schallreuter KU. Tyrosine hydroxylase isoenzyme I is present in human melanosomes: a possible novel function in pigmentation. Exp Dermatol 2003;12: 6170
  • 36
    Li YL, Yu CL, Yu HS. IgG anti-melanocyte antibodies purified from patients with active vitiligo induce HLA-DR and intercellular adhesion molecule-1 expression and an increase in interleukin-8 release by melanocytes. J Invest Dermatol 2000;115: 969973
  • 37
    Orecchia G. Neural pathogenesis. In: HannSK, NordlundJJ. Vitiligo. Oxford: Blackwell Science; 2000. pp. 142150
  • 38
    Picardi A, Pasquini P, Cattaruzza MS, Gaetano P, Melchi CF, Baliva G, Camaioni D, Tiago A, Abeni D, Biondi M. Stressful life events, social support, attachment security and alexithymia in vitiligo. A case–control study. Psychother Psychosom 2003;72: 150158
  • 39
    Liu PY, Bondesson L, Lontz W, Johansson O. The occurrence of cutaneous nerve endings and neuropeptides in vitiligo vulgaris: a case–control study. Arch Dermatol Res 1996;288: 670675
  • 40
    Le Poole IC, van den Wijngaard RM, Smit NP, Oosting J, Westerhof W, Pavel S. Catechol-O-methyltransferase in vitiligo. Arch Dermatol Res 1994;286: 8186
  • 41
    Schallreuter KU, Wood JM, Pittelkow MR, Buttner G, Swanson N, Korner C, Ehrke C. Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch Dermatol Res 1996;288: 1418
  • 42
    Schallreuter KU, Wood JM, Pittelkow MR, Swanson NN, Steinkraus V. Increased in vitro expression of beta 2-adrenoceptors in differentiating lesional keratinocytes of vitiligo patients. Arch Dermatol Res 1993;285: 216220
  • 43
    Salzer BA, Schallreuter KU. Investigation of the personality structure in patients with vitiligo and a possible association with impaired catecholamine metabolism. Dermatology 1995;190: 109115
  • 44
    Morrone A, Picardo M, de Luca C, Terminali O, Passi S, Ippolito F. Catecholamines and vitiligo. Pigment Cell Res 1992;5: 6569
  • 45
    Cucchi ML, Frattini P, Santagostino G, Preda S, Orecchia G. Catecholamines increase in the urine of non-segmental vitiligo especially during its active phase. Pigment Cell Res 2003;16: 111116
  • 46
    Shelley WB, Ohman S. Epinephrine induction of white hair in ACI rats. J Invest Dermatol 1969;53: 155158
  • 47
    Jacobowitz DM, Laties AM. Direct adrenergic innervation of a teleost melanophore. Anat Rec 1968;162: 501504
  • 48
    Novales A. Response of tissue cultured embryonic newt melanophores to epinephrine. Trans Am Micr Soc 1960;79: 2533
  • 49
    Schallreuter KU, Wood JM, Ziegler I, Lemke KR, Pittelkow MR, Lindsey NJ, Gutlich M. Defective tetrahydrobiopterin and catecholamine biosynthesis in the depigmentation disorder vitiligo. Biochim Biophys Acta 1994;1226: 181192
  • 50
    Schallreuter KU, Wood JM, Pittelkow MR, Gutlich M, Lemke KR, Rodl W, Swanson NN, Hitzemann K, Ziegler I. Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science 1994;263: 14441446
  • 51
    Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ, Lerner AB. Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. J Invest Dermatol 1982;79: 321330
  • 52
    Bhawan J, Bhutani LK. Keratinocyte damage in vitiligo. J Cutan Pathol 1983;10: 207212
  • 53
    Schallreuter KU, Wood JM, Berger J. Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 1991;97: 10811085
  • 54
    Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, Grammatico P, Picardo M. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 1997;109: 310313
  • 55
    Passi S, Grandinetti M, Maggio F, Stancato A, De Luca C. Epidermal oxidative stress in vitiligo. Pigment Cell Res 1998;11: 8185
  • 56
    Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc 1999;4: 9196
  • 57
    Schallreuter KU, Wood JM, Lemke KR, Levenig C. Treatment of vitiligo with a topical application of pseudocatalase and calcium in combination with short-term UVB exposure: a case study on 33 patients. Dermatology 1995;190: 223229
  • 58
    Picardo M, Passi S, Morrone A, Grandinetti M, Di Carlo A, Ippolito F. Antioxidant status in the blood of patients with active vitiligo. Pigment Cell Res 1994;7: 110115
  • 59
    Dell'Anna ML, Maresca V, Briganti S, Camera E, Falchi M, Picardo M. Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J Invest Dermatol 2001;117: 908913
  • 60
    Beazley WD, Gaze D, Panske A, Panzig E, Schallreuter KU. Serum selenium levels and blood glutathione peroxidase activities in vitiligo. Br J Dermatol 1999;141: 301303
  • 61
    Boisseau-Garsaud AM, Garsaud P, Lejoly-Boisseau H, Robert M, Quist D, Arveiler B. Increase in total blood antioxidant status and selenium levels in black patients with active vitiligo. Int J Dermatol 2002;41: 640642
  • 62
    Cummings MP, Nordlund JJ. Chemical leucoderma: fact or fancy? Am J Contact Dermatitis 1995;6: 122127
  • 63
    Yang F, Boissy RE. Effects of 4-tertiary butylphenol on the tyrosinase activity in human melanocytes. Pigment Cell Res 1999;12: 237245
  • 64
    Thorneby-Andersson K, Sterner O, Hansson C. Tyrosinase-mediated formation of a reactive quinone from the depigmenting agents, 4-tert-butylphenol and 4-tert-butylcatechol. Pigment Cell Res 2000; 13: 3338
  • 65
    Bowers RR, Lujan J, Biboso A, Kridel S, Varkey C. Premature avian melanocyte death due to low antioxidant levels of protection: fowl model for vitiligo. Pigment Cell Res 1994;7: 409418
  • 66
    Medrano EE, Nordlund JJ. Successful culture of adult human melanocytes obtained from normal and vitiligo donors. J Invest Dermatol 1990;95: 441445
  • 67
    Schallreuter KU, Pittelkow MP. Defective calcium uptake in keratinocyte cell cultures from vitiliginous skin. Arch Dermatol Res 1988;280: 137139
  • 68
    Schallreuter KU, Buttner G, Pittelkow MR, Wood JM, Swanson NN, Korner C. Cytotoxicity of 6-biopterin to human melanocytes. Biochem Biophys Res Commun 1994;204: 4348
  • 69
    Jimbow K, Chen H, Park JS, Thomas PD. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol 2001;144: 5565
  • 70
    Schallreuter KU, Moore J, Wood JM, Beazley WD, Peters EM, Marles LK, Behrens-Williams SC, Dummer R, Blau N, Thony B. Epidermal H(2)O(2) accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: identification of a general mechanism in regulation of all 6BH4-dependent processes? J Invest Dermatol 2001;116: 167174
  • 71
    Cui J, Shen LY, Wang GC. Role of hair follicles in the repigmentation of vitiligo. J Invest Dermatol 1991;97: 410416
  • 72
    Tobin DJ, Swanson NN, Pittelkow MR, Peters EM, Schallreuter KU. Melanocytes are not absent in lesional skin of long duration vitiligo. J Pathol 2000;191: 407416
  • 73
    Jarrett A, Szabo G. The pathological varieties of vitiligo and their response to treatment with meladinine. Br J Dermatol 1956;68: 313326
  • 74
    Schallreuter KU, Pittelkow MR, Wood JM. EF-hands calcium binding regulates the thioredoxin reductase/thioredoxin electron transfer in human keratinocytes. Biochem Biophys Res Commun 1989;162: 13111316
  • 75
    Darier J. Vitiligo In: La pratique dermatologique, Vol. 4, Paris: Masson; 1904. pp. 846858
  • 76
    Morelli JG, Yohn JJ, Zekman T, Norris DA. Melanocyte movement in vitro: role of matrix proteins and integrin receptors. J Invest Dermatol 1993;101: 605608
  • 77
    Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Tenascin is overexpressed in vitiligo lesional skin and inhibits melanocyte adhesion. Br J Dermatol 1997;137: 171–178
  • 78
    Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 1994;107: 983992
  • 79
    Hara M, Yaar M, Tang A, Eller MS, Reenstra W, Gilchrest BA. Role of integrins in melanocyte attachment and dendricity. J Cell Sci 1994;107: 27392748
  • 80
    Jouneau A, Yu YQ, Pasdar M, Larue L. Plasticity of cadherin-catenin expression in the melanocyte lineage. Pigment Cell Res 2000;13: 260272
  • 81
    Hari L, Brault V, Kleber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R, Sommer L. Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 2002;159: 867880
  • 82
    Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest 2002;110: 443452
  • 83
    Aspengren S, Skold HN, Quiroga G, Martensson L, Wallin M. Noradrenaline- and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res 2003;16: 5964
  • 84
    Bessou S, Gauthier Y, Surlève-Bazeille JE, Pain C, Taieb A. Epidermal reconstructs in vitiligo: an extrinsic factor is needed to trigger the disease. Br J Dermatol 1997;137: 890897
  • 85
    Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I, Fabiani M, Fabbri P. New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 2002;15: 8792
  • 86
    Hunter JA, McVittie E, Comaish JS. Light and electron microscopic studies of physical injury to the skin. II. Friction. Br J Dermatol 1974;90: 491499
  • 87
    Mottaz JH, Thorne EG, Zelickson AS. Response of the epidermal melanocyte to minor trauma. Arch Dermatol 1971;104: 611618
  • 88
    Warfvinge K, Agdell J, Andersson L, Andersson A. Attachment and detachment of human epidermal melanocytes. Acta Derm Venereol 1990;70: 189193
  • 89
    Morohashi M, Hashimoto K, Goodman TF Jr, Newton DE, Rist T. Ultrastructural studies of vitiligo, Vogt-Koyanagi syndrome, and incontinentia pigmenti achromians. Arch Dermatol 1977;113: 755766
  • 90
    Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 2002;416: 854860
  • 91
    Casp CB, She JX, McCormack WT. Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 2002;15: 6266