Melatonin protects against copper-mediated free radical damage

Authors


Santy Daya Faculty of Pharmacy, Rhodes University, Box 94, Grahamstown, 6140 South Africa. E-mail: s.daya@ru.ac.za

Abstract

Copper is an essential trace element which forms an integral component of many enzymes. While trace amounts of copper are needed to sustain life, excess copper is extremely toxic. Copper has been implicated in various neurodegenerative disorders, such as Wilson's and Alzheimer's diseases. Previous studies showed that melatonin, the principle secretory product of the pineal gland, binds Cupric chloride (Cu2+) and that this may have implications in copper-induced neurodegenerative diseases. In the present study, in vitro copper-mediated lipid peroxidation was induced. Melatonin (5 mM) protected against copper-mediated lipid peroxidation in liver homogenates. Electron micrographs of in vivo administered Cu2+ and melatonin show that melatonin affords some protection to rat hepatocytes in the presence of copper. Electrochemical studies performed show that melatonin, in addition to binding Cu2+, may provide protection against copper-mediated free radical damage by binding Cu1+. The findings of these studies provide further evidence for the neuroprotective role of melatonin.

Ancillary