SEARCH

SEARCH BY CITATION

Keywords:

  • aluminum;
  • brain;
  • liver;
  • melatonin;
  • rats;
  • ROS

Abstract: In recent years, it has been suggested that oxidative stress is a feature of Alzheimer's disease in which aluminum (Al) could exacerbate oxidative events. The goal of the present study was to assess in rats the pro-oxidant effects induced by Al exposure, as well as the protective role of exogenous melatonin. Two groups of male rats were intraperitoneally injected with Al only or melatonin only, at doses of 5 and 10 mg/kg/day, respectively for 8 wk. During this period, a third group of animals received Al (5 mg/kg/day) and melatonin (10 mg/kg/day). At the end of the treatment period, rats were anesthesized and arterial blood was obtained. Thereafter, animals were killed and liver and brain (cortex, hippocampus and cerebellum) were removed. These tissues were processed to examine oxidative stress markers: glutathione transferase (GST), reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as protein content. Samples of these tissues were also used to determine Al, Fe, Mn, Cu and Zn concentrations. The results show that Al exposure promotes oxidative stress in different neural areas, including those in which Al concentrations were not significantly increased. The biochemical changes observed in neural tissues show that Al acts as pro-oxidant, while melatonin exerts an antioxidant action in Al-treated animals. The protective effects of melatonin against cellular damage caused by Al-induced oxidative stress, together with its low toxicity, make melatonin worthy of investigation as a potential supplement to be included in the treatment of neurological disorders in which the oxidative effects must be minimized.