SEARCH

SEARCH BY CITATION

References

  • 1
    Falnes PO, Sandvig K. Penetration of protein toxins into cells. Curr Opin Cell Biol 2000;12:407413.
  • 2
    Dautry-Varsat A. Clathrin-independent endocytosis. In: Marsh, M, ed. Endocytosis. Frontiers in Molecular Biology, 1st edn. Oxford: Oxford University Press; 2000. p. 2657.
  • 3
    Nichols BJ, Lippincott-Schwartz J. Endocytosis without clathrin coats. Trends Cell Biol 2001;11:406412.
  • 4
    Hummeler K, Tomassini N, Sokol F. Morphological aspects of the uptake of Simian Virus 40 by permissive cells. J Virol 1970;6:8793.
  • 5
    Anderson HA, Chen Y, Norkin LC. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 1996;7:18251834.
  • 6
    Stang E, Kartenbeck J, Parton RG. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol Biol Cell 1997;8:4757.
  • 7
    Parton RG. Caveolae and caveolins. Curr Opin Cell Biol 1996;8:542548.
  • 8
    Fielding CJ, Fielding PE. Intracellular cholesterol transport. J Lipid Res 1997;38:15031521.
  • 9
    Anderson RGW. The caveolae membrane system. Annu Rev Biochem 1998;67:199225.
  • 10
    Kurzchalia TV, Parton RG. Membrane microdomains and caveolae. Curr Opin Cell Biol 1999;11:424431.
  • 11
    Smart EJ, Graf GA, Mcniven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains and signal transduction. Mol Cell Biol 1999;19:72897304.
  • 12
    Ikonen E, Parton RG. Caveolins and cellular cholesterol balance. Traffic 2000;1:212217.DOI: 10.1034/j.1600-0854.2000.010303.x
  • 13
    Palade GE. Fine structure of blood capillaries. J Appl Physiol 1953;24:1424.
  • 14
    Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1955;1:445458.
  • 15
    Stan RV, Roberts WG, Predescu D, Ihida K, Saucan L, Ghitescu L, Palade GE. Immunoisolation and partial characterisation of endothelial plasmalemmal vesicles (caveolae). Mol Biol Cell 1997;8:595605.
  • 16
    Stan RV, Ghitescu L, Jacobson BS, Palade GE. Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Cell Biol 1999;145:11891198.
  • 17
    Parton RG, Way M, Zorzi N, Stang E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 1997;136:137154.
  • 18
    Carozzi AJ, Ikonen E, Lindsay MR, Parton RG. Role of cholesterol in developing T-tubules: analogous mechanisms for T-tubule caveolae biogenesis. Traffic 2000;1:326341.
  • 19
    Montesano R, Roth J, Robert A, Orci L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 1982;296:651653.
  • 20
    Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell 1992;68:673682.
  • 21
    Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001;3:473483.DOI: 10.1038/35074539
  • 22
    Thomsen P, Roepstorff K, Stahlhut M, Van Deurs B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 2002;13:238250.
  • 23
    Dupree P, Parton RG, Raposo G, Kurzchalia TV, Simons K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J 1993;12:15971605.
  • 24
    Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 1995;6:911927.
  • 25
    Dietzen DJ, Hastings WR, Lublin DM. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 1995;270:68386842.
  • 26
    Glenney JR, Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 1989;264:2016320166.
  • 27
    Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 1995;92:1033910343.
  • 28
    Peters KR, Carley WW, Palade GE. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol 1985;101:22332238.
  • 29
    Fra AM, Williamson E, Simons K, Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 1995;92:86558659.
  • 30
    Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi- network-derived transport vesicles. J Cell Biol 1992;118:10031014.
  • 31
    Smart EJ, Ying YS, Conrad PA, Anderson RG. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol 1994;127:11851197.
  • 32
    Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 2001;152:10711078.
  • 33
    Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001;152:10571070.
  • 34
    Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R. Caveolin-2 is targeted to lipid droplets, a new ‘membrane domain’ in the cell. J Cell Biol 2001;152:10791085.
  • 35
    Parton RG, Joggerst B, Simons K. Regulated internalization of caveolae. J Cell Biol 1994;127:11991215.
  • 36
    Aoki T, Nomura R, Fujimoto T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res 1999;253:629636.
  • 37
    Kang YS, Ko YG, Seo JS. Caveolin internalization by heat shock or hyperosmotic shock. Exp Cell Res 2000;255:221228.
  • 38
    Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains (see comments). Nat Cell Biol 1999;1:98105.
  • 39
    Minshall RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE, Malik AB. Endothelial cell-surface gp60 activates vesicle formation and trafficking via G (i) -coupled Src kinase signaling pathway. J Cell Biol 2000;150:10571070.
  • 40
    Le PU, Guay G, Altschuler Y, Nabi IR. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 2001;27:27.
  • 41
    Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001;7:661671.
  • 42
    Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H Jr, Kneitz B, Edelmann W, Lisanti MP. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. J Biol Chem 2001;276:2142521433.
  • 43
    Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, DiVizio D, Hou MJ, Kneitz B, Lagaud G, Chinst GS, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001;276:3812138138.
  • 44
    Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001;293:24492452.
  • 45
    Oh P, Mcintosh DP, Schnitzer JE. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998;141:101114.
  • 46
    Henley JR, Krueger EW, Oswald BJ, Mcniven MA. Dynamin-mediated internalization of caveolae. J Cell Biol 1998;141:8599.
  • 47
    Hinshaw JE. Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 2000;16:483519.
  • 48
    De Camilli P, Takei K, Mcpherson PS. The function of dynamin in endocytosis. Curr Opin Neurobiol 1995;5:559565.
  • 49
    Sever S, Damke H, Schmid SL. Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 2000;1:385392.
  • 50
    Pelkmans L, Püntener D, Helenius A. SV-40 induced internalization of caveolae involves local actin polymerization and dynamin-recruitment. Science 2002; in press.
  • 51
    Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF. SNAP, annexins, and GTPases. J Biol Chem 1995;270:1439914404.
  • 52
    Sargiacomo M, Sudol M, Tang Z, Lisanti MP. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 1993;122:789807.
  • 53
    Lisanti MP, Tang ZL, Sargiacomo M. Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein. implications for the biogenesis of caveolae. J Cell Biol 1993;123:595604.
  • 54
    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000;1:3139.DOI: 10.1038/35036052
  • 55
    Schlegel A, Lisanti MP. Caveolae and their coat proteins, the caveolins: from electron microscopic novelty to biological launching pad. J Cell Physiol 2001;186:329337.DOI: 10.1002/1097-4652(2001)9999:9999<000::aid-jcp1045>3.0.co;2-0
  • 56
    Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998;14:111136.
  • 57
    Maul GG, Rovera G, Vorbrodt A, Abramczuk J. Membrane fusion as a mechanism of Simian Virus 40 entry into different cellular compartments. J Virol 1978;28:936944.
  • 58
    Upcroft P. Simian virus 40 infection is not mediated by lysosomal activation. J Gen Virol 1987;678:24772480.
  • 59
    Shimura H, Umeno Y, Kimura G. Effects of inhibitors of the cytoplasmic structures and functions on the early phase of infection of cultured cells with simian virus 40. Virology 1987;158:3443.
  • 60
    Atwood WJ, Norkin LC. Class I major histocompatibility proteins as cell surface receptors for simian virus 40. J Virol 1989;63:44744477.
  • 61
    Kartenbeck J, Stukenbrok H, Helenius A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J Cell Biol 1989;109:27212729.
  • 62
    Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC. Structure of Simian virus 40 at 3.8-Å resolution. Nature 1991;354:278284.
  • 63
    Clever J, Yamada M, Kasamatsu H. Import of simian virus 40 virions through nuclear pore complexes. Proc Natl Acad Sci USA 1991;88:73337337.
  • 64
    Breau WC, Atwood WJ, Norkin LC. Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor. J Virol 1992;66:20372045.
  • 65
    Yamada M, Kasamatsu H. Role of nuclear pore complex in simian virus 40 nuclear targeting. J Virol 1993;67:119130.
  • 66
    Stehle T, Gamblin SJ, Yan Y, Harrison SC. The structure of simian virus 40 refined at 3.1 Å resolution. Structure 1996;4:165182.
  • 67
    Chen Y, Norkin LC. Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae. Exp Cell Res 1999;246:8390.DOI: 10.1006/excr.1998.4301
  • 68
    Anderson HA, Chen Y, Norkin LC. MHC class I molecules are enriched in caveolae but do not enter with simian virus 40. J Gen Virol 1998;79:14691477.
  • 69
    Dangoria NS, Breau WC, Anderson HA, Cishek DM, Norkin LC. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry. J Gen Virol 1996;77:21732182.
  • 70
    Puri V, Watanabe R, Singh RD, Dominguez M, Brown JC, Wheatley CL, Marks DL, Pagano RE. Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol 2001;154:535547.
  • 71
    Kasamatsu H, Nakanishi A. How do animal DNA viruses get to the nucleus? Annu Rev Microbiol 1998;52:627686.
  • 72
    Fujimoto LM, Roth R, Heuser JE, Schmid SL. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 2000;1:161171.DOI: 10.1034/j.1600-0854.2000.010208.x
  • 73
    Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE, Biological basket weaving. formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2001;17:517568.
  • 74
    Rothberg KG, Ying YS, Kolhouse JF, Kamen BA, Anderson RG. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol 1990;110:637649.
  • 75
    Anderson RG, Kamen BA, Rothberg KG, Lacey SW. Potocytosis: sequestration and transport of small molecules by caveolae. Science 1992;255:410411.
  • 76
    Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 1994;127:12171232.
  • 77
    Benlimame N, Le PU, Nabi IR. Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol Biol Cell 1998;9:17731786.
  • 78
    Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 2001;153:529541.
  • 79
    Shin JS, Gao Z, Abraham SN. Involvement of cellular caveolae in bacterial entry into mast cells (In Process Citation). Science 2000;289:785788.
  • 80
    Richterova Z, Liebl D, Horak M, Palkova Z, Stokrova J, Hozak P, Korb J, Forstova J. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J Virol 2001;75:1088010891.
  • 81
    Stehle T, Yan Y, Benjamin TL, Harrison SC. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 1994;369:160163.
  • 82
    Marjomaki V, Pietiainen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypia T, Heino J. Internalization of echovirus 1 in caveolae. J Virol 2002;76:18561865.
  • 83
    Werling D, Hope JC, Chaplin P, Collins RA, Taylor G, Howard CJ. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J Leukoc Biol 1999;66:5058.
  • 84
    Campbell SM, Crowe SM, Mak J. Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 2001;22:217227.
  • 85
    Mayor S, Rothberg KG, Maxfield FR. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 1994;264:19481951.
  • 86
    Parton RG, Lindsay M. Exploitation of major histocompatibility complex class I molecules and caveolae by simian virus 40. Immunol Rev 1999;168:2331.
  • 87
    Verkade P, Harder T, Lafont F, Simons K. Induction of caveolae in the apical plasma membrane of Madin-Darby canine kidney cells. J Cell Biol 2000;148:727739.
  • 88
    Harder T, Simons K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur J Immunol 1999;29:556562.DOI: 10.1002/(sici)1521-4141(199902)29:02<556::aid-immu556>3.0.co;2-2
  • 89
    Martin TF. PI (4,5)P(2) regulation of surface membrane traffic. Curr Opin Cell Biol 2001;13:493499.
  • 90
    Caroni P. New EMBO members' review: actin cytoskeleton regulation through modulation of PI (4,5)P(2) rafts. EMBO J 2001;20:43324336.
  • 91
    Dessy C, Kelly RA, Balligand JL, Feron O. Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling. EMBO J 2000;19:42724280.
  • 92
    Schnitzer JE, Bravo J. High affinity binding, endocytosis, and degradation of conformationally modified albumins. Potential role of gp30 and gp18 as novel scavenger receptors. J Biol Chem 1993;268:75627570.
  • 93
    Lalli G, Schiavo G. Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J Cell Biol 2002;156:233240.
  • 94
    Shogomori H, Futerman AH. Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft- independent mechanism. J Biol Chem 2001;276:91829188.
  • 95
    Torgersen ML, Skretting G, Van Deurs B, Sandvig K. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 2001;114:37373747.
  • 96
    Rijnboutt S, Jansen G, Posthuma G, Hynes JB, Schornagel JH, Strous GJ. Endocytosis of GPI-linked membrane folate receptor-alpha. J Cell Biol 1996;132:3547.
  • 97
    Le PU, Benlimame N, Lagana A, Raz A, Nabi IR. Clathrin-mediated endocytosis and recycling of autocrine motility factor receptor to fibronectin fibrils is a limiting factor for NIH-3T3 cell motility. J Cell Sci 2000;113:32273240.
  • 98
    Munro P, Kojima H, Dupont JL, Bossu JL, Poulain B, Boquet P. High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Biochem Biophys Res Commun 2001;289:623629.
  • 99
    Herreros J, Ng T, Schiavo G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 2001;12:29472960.
  • 100
    Mackay RL, Consiligi RA. Early events in polyoma virus infection. Attachment, penetration, and nuclear entry. J Virol 1976;19:620636.
  • 101
    Gilbert JM, Benjamin TL. Early steps of polyomavirus entry into cells. J Virol 2000;74:85828588.
  • 102
    Marsh M, Bolzau E, Helenius A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 1983;32:931940.
  • 103
    Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 1996;12:575625.
  • 104
    Stahlhut M, Van Deurs B. Identification of filamin as a novel ligand for caveolin-1: Evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Cell Biol 2000;11:325337.