SEARCH

SEARCH BY CITATION

Keywords:

  • Alcohol;
  • genetics;
  • inbred strains;
  • psychomotor stimulation;
  • QTL

Genetic influences on the psychomotor stimulant effect of ethanol may be a key feature of abuse liability. While earlier work has shown the activational effects of ethanol to be under the influence of a relatively uncomplicated additive genetic system, preliminary data from our laboratory suggested the possibility of nonadditive genetic variance. In the present study, a full Mendelian cross was conducted to further characterize gene action and search for quantitative trait loci (QTL) influencing the psychomotor stimulant properties of ethanol. We tested 3062 mice of the six Mendelian cross genotypes (P1, P2, F1, F2, BC1 and BC2) derived from a cross between the C57BL/6J (B6) and C3H/HeJ (C3H) inbred strains of mice. On day 1, mice were injected with saline, put in a holding cage for 5 min, then placed in an activity monitor for 5 min. On day 2, mice were injected with 1.5 g/kg ethanol, and activity again monitored for 5 min. Analysis showed the expected activation in the C3H strain and little activation in the B6 strain, with no effect of sex. Biometrical genetic analysis showed a best-fit model that included the mean (m), additive effect (a), and an epistatic parameter (i = homozygote by homozygote interaction). Analysis showed good evidence for QTL on chromosomes 1 (logarithm of odds (LOD) 3.4–7.5, 88–100 cM), 6 (LOD 9.1–10.4, 46–50 cM) and 15 (LOD 7.3–8.8, 28–32 cM). While the regions on chromosomes 1 and 6 have previously been implicated in several different ethanol-related phenotypes, this is the first report of a QTL influencing the psychomotor stimulant properties of ethanol on chromosome 15. Other studies have identified QTL in this region of chromosome 15 mediating locomotor activation caused by other psychostimulants, including cocaine, amphetamine and phencyclidine.