A nitric oxide/Ca2+/calmodulin/ERK1/2 mitogen-activated protein kinase pathway is involved in the mitogenic effect of IL-1β in human astrocytoma cells

Authors


Department of Biomedical Sciences, Università di Siena, via A Moro 2, Siena 53100, Italy. E-mail: palmi@unisi.it

Abstract

Background and purpose:

Evidence is accumulating to support a role for interleukin-1β (IL-1β) in astrocyte proliferation. However, the mechanism by which this cytokine modulates this process is not fully elucidated.

Experimental approach:

In this study we used human astrocytoma U-373MG cells to investigate the role of nitric oxide (NO), intracellular Ca2+ concentration ([Ca2+]i), and extracellular signal-regulated protein kinase (ERK) in the signalling pathway mediating IL-1β-induced astrocyte proliferation.

Key results:

Low IL-1β concentrations induced dose-dependent ERK activation which paralleled upregulation of cell division, whereas higher concentrations gradually reversed both these responses by promoting apoptosis. Pretreatment with the nonspecific NOS inhibitor, N-ω-nitro-l-arginine methyl ester (L-NAME) or the selective iNOS inhibitor, N-[[3-(aminomethyl)phenyl]methyl]-ethanimidamide dihydrochloride (1400W), antagonized ERK activation and cell proliferation induced by IL-1β. Inhibition of cGMP formation by the guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), partially inhibited ERK activation and cell division. Functionally blocking Ca2+ release from endoplasmic reticulum with ryanodine or 2-aminoethoxydiphenylborane (2-APB), inhibiting calmodulin (CaM) activity with N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide hydrochloride (W7) or MAPK kinase activity with 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthiol]butadiene (U0126) downregulated IL-1β-induced ERK activation as well as cell proliferation. The cytokine induced a transient and time-dependent increase in intracellular NO levels which preceded elevation in [Ca2+]i.

Conclusions and implications:

These data identified the NO/Ca2+/CaM/ERK signalling pathway as a novel mechanism mediating the mitogenic effect of IL-1β in human astrocytes. As astrocyte proliferation is a hallmark of reactive astrogliosis, our results reveal a new potential target for therapeutic intervention in neuroinflammatory disorders.

British Journal of Pharmacology (2008) 153, 1706–1717; doi:10.1038/bjp.2008.40; published online 25 February 2008

Ancillary