miR-142-3p restricts cAMP production in CD4+CD25 T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA

Authors


Abstract

Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates diverse cellular functions. It has been found that CD4+CD25+ regulatory T (TREG) cells exert their suppressor function by transferring cAMP to responder T cells. Here, we show that miR-142-3p regulates the production of cAMP by targeting adenylyl cyclase (AC) 9 messenger RNA in CD4+CD25 T cells and CD4+CD25+ TREG cells. miR-142-3p limits the level of cAMP in CD4+CD25 T cells by inhibiting AC9 production, whereas forkhead box P3 (FOXP3) downregulates miR-142-3p to keep the AC9/cAMP pathway active in CD4+CD25+ TREG cells. These findings reveal a new molecular mechanism through which CD4+CD25+ TREG cells contain a high level of cAMP for their suppressor function, and also suggest that the microRNA controlling AC expression might restrict the final level of cAMP in various types of cells.

Ancillary