• adipocyte;
  • differentiation;
  • mitogen-activated protein kinase;
  • rabbit serum;
  • thiazolidinediones


Objective: To validate the human mesenchymal stem cells (hMSCs) as a new in vitro model for the study of human adipogenesis, to develop the optimal protocol for the differentiation of hMSCs into adipocytes, and to describe effect of mitogen-activated protein kinase on hMSC differentiation into adipocytes.

Research Methods and Procedures: hMSCs, obtained commercially, were differentiated by exposure to insulin, dexamethasone, indomethacin, and 3-isobutyl-1-methylxanthine three times for 3 days each. Various differentiation conditions were examined to optimize differentiation as measured by Oil Red O staining. The gene expression during adipogenic conversion was assessed by reverse-transcription polymerase chain reaction, real-time reverse-transcription polymerase chain reaction, and Western blotting.

Results: hMSCs differentiated into adipocytes to a different extent depending on the experimental conditions. We have found that differentiation medium based on medium 199 and containing 170 nM insulin, 0.5 mM 3-isobutyl-1-methylxanthine, 0.2 mM indomethacin, 1 μM dexamethasone, and 5% fetal bovine serum was optimal. However, the replacement of fetal bovine serum with rabbit serum (15%) led to further enhancement of differentiation. Inhibition of mitogen-activated protein kinase activation also facilitated adipogenic conversion of hMSCs. The pattern of genes expressed during hMSC differentiation into adipocytes (adipsin, peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-β, GLUT4, and leptin) was similar to that observed in other in vitro adipocyte models.

Discussion: hMSCs are renewable sources of noncommitted precursors that are able to differentiate into mature adipocytes under the proper hormonal and pharmacological stimuli. Thus, hMSCs represent a new model for the study of human adipogenesis.