• 1
    American Diabetes Association (1998) Consensus development conference on insulin resistance. Diabetes Care. 21: 310314.
  • 2
    Randle, P. J., Garland, P. B., Hales, C. N., Newsholme, E. A. (1963) The glucose fatty-acid cycle, its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1: 785789.
  • 3
    Storlien, L., Jenkins, A., Chisholm, D., Pascoe, W., Khouri, S., Kraegen, E. W. (1991) Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglycerides and ω-3 fatty acids in muscle phospholipids. Diabetes. 40: 280289.
  • 4
    McGarry, J. D. (2002) Banting Lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 51: 718.
  • 5
    Després, J. P., Lemieux, S., Lamarche, B., et al. (1995) The insulin resistance-dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications. Int J Obes Relat Metab Disord. 19: (Suppl. 1) S76S86.
  • 6
    Perseghin, G., Scifo, P., De Cobelli, F., et al. (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2diabetic parents. Diabetes. 48: 16001606.
  • 7
    Pan, D. A., Lillioja, S., Kriketos, A. D., et al. (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 46: 983988.
  • 8
    Goodpaster, B. H., Theriault, R., Watkins, S. C., Kelley, D. E. (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism. 49: 467472.
  • 9
    Manco, M., Mingrone, G., Greco, A. V., et al. (2000) Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. Metabolism. 49: 220224.
  • 10
    Bowker-Kinley, M. M., Davis, W. I., Wu, P., Harris, R. A., Popov, K. M. (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 329: 191196.
  • 11
    Randle, P. J., Priestman, D. A., Mistry, S. C., Halsall, A. (1994) Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem. 55 (suppl): 111.
  • 12
    Randle, P. J., Priestman, D. A., Mistry, S. C., Halsall, A. (1994) Mechanism modifying glucose oxidation in diabetes mellitus. Diabetologia. 37: (Suppl 2) S155S161.
  • 13
    Wu, P., Inskeep, K., Bowker-Kinley, M. M., Popov, K. M., Harris, R. A. (1999) Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes. 48: 15931599.
  • 14
    Sugden, M. C., Kraus, A., Harris, R. A., Holness, M. J. (2000) Fibre-type specific modification of the activity and regulation of skeletal muscle pyruvate dehydrogenase kinase (PDK) by prolonged starvation and refeeding is associated with targeted regulation of PDK isoenzyme 4 expression. Biochem J. 346: 651657.
  • 15
    Holness, M. J., Kraus, A., Harris, R. A., Sugden, M. C. (2000) Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes. 49: 775781.
  • 16
    Majer, M., Popov, K-M, Harris, R. A., Bogardus, C., Prochazka, M. (1998) Insulin downregulates pyruvate dehydrogenase kinase (PDK) mRNA: potential mechanism contributing to increased lipid oxidation in insulin-resistant subjects. Mol Genet Metab. 65: 181186.
  • 17
    Mingrone, G., De Gaetano, A., Greco, A. V., et al. (1997) Reversibility of insulin resistance in obese diabetic patients: role of plasma lipids. Diabetologia. 40: 599605.
  • 18
    Greco, A. V., Mingrone, G., Giancaterini, A., et al. (2002) Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 51: 144151.
  • 19
    Scopinaro, N., Gianetta, E., Civalleri, D., Bonalumi, U., Bachi, V. (1979) Biliopancreatic bypass for obesity: II. Initial experience in man. Br J Surg. 66: 619620.
  • 20
    Moore, F. D., Olesen, K. H., McMurrey, J. D., Parker, H. V., Ball, M. R., Boyden, C. M. (1963) The Body Cell Mass and Its Supporting Environment. Saunders Philadelphia, PA.
  • 21
    Culebras, J. M., Moore, F. D. (1977) Total body water and the exchangeable hydrogen: I. Theoretical calculations of nonaqueous exchangeable hydrogen in men. Am J Physiol. 232: R54R59.
  • 22
    Heymsfield, S. B., Lichtman, S., Baumgartner, R. N., et al. (1990) Body composition of humans: comparison of two improved four-compartment models that differ in expense, technical complexity, and radiation exposure. Am J Clin Nutr. 52: 5258.
  • 23
    DeFronzo, R. A., Tobin, J. D., Anders, R. (1979) Glucose clamp technique: a model for quantifying insulin secretion and resistance. Am J Physiol. 237: E214E223.
  • 24
    Chomczynski, P., Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162: 156159.
  • 25
    Marone, M., Scambia, G., Mozzetti, S., et al. (1998) bcl-2, bax, bcl-xL and bcl-xS expression in normal and neoplastic ovarian tissue. Clin Cancer Res. 4: 517524.
  • 26
    Passi, S., Rothschild-Boros, M. C., Fasella, P., Nazzaro-Porro, M., Whitehouse, D. (1981) An application of high performance liquid chromatography to analysis of lipids in archaeological samples. J Lip Res. 22: 778784.
  • 27
    Garland, P. B., Randle, P. J. (1962) A rapid enzymatic assay for glycerol. Nature. 196: 987988.
  • 28
    Bergmeyer, H-U Ed. (1974) Methods of Enzymatic Analysis, Ed 2 Academic New York.
  • 29
    Huang, B., Gudi, R., Wu, P., Harris, R. A., Hamilton, J., Popov, K. M. (1998) Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation. J Biol Chem. 273: 1768017688.
  • 30
    Fuller, S. J., Randle, P. J. (1984) Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal muscle mitochondria: effects of starvation and diabetes. Biochem J. 219: 635646.
  • 31
    Ashour, B., Hansford, R. G. (1983) Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria. Biochem J. 214: 725736.
  • 32
    Batenburg, J. J., Olson, M. S. (1976) Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria. J Biol Chem. 251: 13641370.
  • 33
    Wu, P., Sato, J., Zhao, Y., Jaskiewicz, J., Popov, K. M., Harris, R. A. (1998) Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 329: 197201.
  • 34
    Wu, P., Blair, P. V., Sato, J., Jaskiewicz, J., Popov, K. M., Harris, R. A. (2000) Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys. 381: 17.
  • 35
    Sugden, M. C., Bulmer, K., Augustine, D., Holness, M. J. (2001) Selective modification of pyruvate dehydrogenase kinase isoform expression in rat pancreatic islets elicited by starvation and activation of peroxisome proliferator-activated receptor-alpha: implications for glucose-stimulated insulin secretion. Diabetes. 50: 27292736.
  • 36
    Wu, P., Peters, J. M., Harris, R. A. (2001) Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor alpha. Biochem Biophys Res Commun. 287: 391396.
  • 37
    Fryer, L. G., Orfali, K. A., Holness, M. J., Saggerson, E. D., Sugden, M. C. (1995) The long-term regulation of skeletal muscle pyruvate dehydrogenase kinase by dietary lipid is dependent on fatty acid composition. Eur J Biochem. 229: 741748.