SEARCH

SEARCH BY CITATION

References

  • 1
    McGarry, JD. (1992) What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258: 766770.
  • 2
    McGarry, JD. (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51: 718.
  • 3
    Colberg, S. R., Simoneau, J. A., Thaete, F. L., Kelley, DE. (1995) Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest. 95: 18461853.
  • 4
    Kelley, D. E., Simoneau, JA. (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest. 94: 23492356.
  • 5
    Blaak, E. E., Wagenmakers, A. J., Glatz, J. F., et al (2000) Plasma FFA utilization and fatty acid-binding protein content are diminished in type 2 diabetic muscle. Am J Physiol Endocrinol Metab. 279: E146E154.
  • 6
    Blaak, E. E., van Aggel-Leijssen, DPC, Wagenmakers, AJM, Saris, WHM, van Baak, MA. (2000) Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity exercise. Diabetes 49: 21022107.
  • 7
    Pan, D. A., Lillioja, S., Kriketos, A. D., et al (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46: 983988.
  • 8
    Virkamaki, A., Korsheninnikova, E., Seppala-Lindroos, A., et al (2001) Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 50: 23372343.
  • 9
    Blaak, E. E., Wolffenbuttel, B. H., Saris, W. H., Pelsers, M. M., Wagenmakers, AJ. (2001) Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetic subjects. J Clin Endocrinol Metab. 86: 16381644.
  • 10
    Turpeinen, A. K., Takala, T. O., Nuutila, P., et al (1999) Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R, S)-[18F]fluoro-6-thia-heptadecanoic acid. Diabetes 48: 12451250.
  • 11
    Mensink, M., Blaak, E. E., van Baak, M. A., Wagenmakers, A. J., Saris, WH. (2001) Plasma free fatty acid uptake and oxidation are already diminished in subjects at high risk for developing type 2 diabetes. Diabetes 50: 25482554.
  • 12
    Schrauwen, P., Van Aggel-Leijssen, D. P., Hul, G., et al (2002) The effect of a 3-month low-intensity endurance training program on fat oxidation and acetyl-CoA carboxylase-2 expression. Diabetes 51: 22202226.
  • 13
    Sial, S., Coggan, A. R., Hickner, R. C., Klein, S. (1998) Training-induced alterations in fat and carbohydrate metabolism during exercise in elderly subjects. Am J Physiol. 274: E785E790.
  • 14
    Van Aggel-Leijssen, D. P., Saris, W. H., Wagenmakers, A. J., Senden, J. M., Van Baak, MA. (2002) Effect of exercise training at different intensities on fat metabolism of obese men. J Appl Physiol. 92: 13001309.
  • 15
    Tuomilehto, J., Lindstrom, J., Eriksson, J. G., et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 344: 13431350.
  • 16
    Knowler, W. C., Barrett-Connor, E., Fowler, S. E., et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 346: 393403.
  • 17
    Mensink, M., Feskens, E. J., Saris, W. H., De Bruin, T. W., Blaak, EE. (2003) Study on lifestyle intervention and impaired glucose tolerance Maastricht (SLIM): preliminary results after one year. Int J Obes Relat Metab Disord. 27: 377384.
  • 18
    Mensink, M., Corpeleijn, E., Feskens, E. J., et al (2003) Study on lifestyle-intervention and impaired glucose tolerance Maastricht (SLIM): design and screening results. Diabetes Res Clin Pract. 61: 4958.
  • 19
    Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., Turner, RC. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412419.
  • 20
    Siri, W. (1956) The gross composition of the body. Adv Biol Med Phys. 4: 239280.
  • 21
    Wagenmakers, A. J., Rehrer, N. J., Brouns, F., Saris, W. H., Halliday, D. (1993) Breath 13CO2 background enrichment during exercise: diet-related differences between Europe and America. J Appl Physiol. 74: 23532357.
  • 22
    Schrauwen, P., Blaak, E. E., Van Aggel-Leijssen, D. P., Borghouts, L. B., Wagenmakers, AJ. (2000) Determinants of the acetate recovery factor: implications for estimation of [13C]substrate oxidation. Clin Sci (Lond) 98: 587592.
  • 23
    Weir, J. (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 109: 19.
  • 24
    Frayn, KN. (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 55: 628634.
  • 25
    Jeukendrup, A. E., Raben, A., Gijsen, A., et al (1999) Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol. 515: 579589.
  • 26
    Sidossis, L. S., Coggan, A. R., Gastaldelli, A., Wolfe, RR. (1995) A new correction factor for use in tracer estimations of plasma fatty acid oxidation. Am J Physiol 269: E649E656.
  • 27
    Schrauwen, P., Wagenmakers, A. J., van Marken Lichtenbelt W. D., Saris, W. H., Westerterp, KR. (2000) Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation. Diabetes 49: 640646.
  • 28
    Kanaley, J. A., Cryer, P. E., Jensen, MD. (1993) Fatty acid kinetic responses to exercise. Effects of obesity, body fat distribution, and energy-restricted diet. J Clin Invest. 92: 255261.
  • 29
    Colberg, S. R., Hagberg, J. M., McCole, S. D., Zmuda, J. M., Thompson, P. D., Kelley, DE. (1996) Utilization of glycogen but not plasma glucose is reduced in individuals with NIDDM during mild-intensity exercise. J Appl Physiol. 81: 20272033.
  • 30
    Horowitz, J. F., Klein, S. (2000) Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity. J Appl Physiol. 89: 22762282.
  • 31
    Mensink, M., Blaak, E. E., Vidal, H., De Bruin, T. W., Glatz, J. F., Saris, WH. (2003) Lifestyle changes and lipid metabolism gene expression and protein content in skeletal muscle of subjects with impaired glucose tolerance. Diabetologia 46: 10821089.
  • 32
    Jones, P. J., Schoeller, DA. (1988) Polyunsaturated:saturated ratio of diet fat influences energy substrate utilization in the human. Metabolism 37: 145151.
  • 33
    Ruderman, N. B., Saha, A. K., Vavvas, D., Witters, LA. (1999) Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol. 276: E1E18.
  • 34
    Holloszy, J. O., Coyle, EF. (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 56: 831838.
  • 35
    Kiens, B., Essen-Gustavsson, B., Christensen, N. J., Saltin, B. (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol. 469: 459478.
  • 36
    Kiens, B. (1997) Effect of endurance training on fatty acid metabolism: local adaptations. Med Sci Sports Exerc. 29: 640645.
  • 37
    Simoneau, J. A., Veerkamp, J. H., Turcotte, L. P., Kelley, DE. (1999) Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 13: 20512060.