• 1
    Rossner, S. (2002) Obesity: the disease of the twenty-first century. Int J Obes Relat Metab Disord. 26 (Suppl 4): 2S4S.
  • 2
    Pi-Sunyer, FX (2002) The obesity epidemic: pathophysiology and consequences of obesity. Obes Res. 10 (Suppl 2): 97S104S.
  • 3
    Ravussin, E., Rising, R. (1992) Daily energy expenditure in humans: measurements in a respiratory chamber and by doubly labelled water. In Kinney, JM Tucker, HN eds. Energy Metabolism: Tissue Determinants and Cellular Corollaries 8196. Raven Press New York.
  • 4
    McClave, S. A., Snider, HL (1992) Use of indirect calorimetry in clinical nutrition. Nutr Clin Pract. 7: 207221.
  • 5
    Campbell, K. L., Crocker, P. R., McKenzie, DC (2002) Field evaluation of energy expenditure in women using Tritrac accelerometers. Med Sci Sports Exerc. 34: 16671674.
  • 6
    Daly, J. M., Heymsfield, S. B., Head, C. A., et al. (1985) Human energy requirements: overestimation by widely used prediction equation. Am J Clin Nutr. 42: 11701177.
  • 7
    Reeves, M. M., Capra, S. (2003) Predicting energy requirements in the clinical setting: are current methods evidence based? Nutr Rev. 61: 143151.
  • 8
    Sallis, J. F., Saelens, BE (2000) Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport 71 (Suppl 2): S1S14.
  • 9
    King, G. A., Torres, N., Potter, C., Brooks, T. J., Coleman, KJ (2004) Comparison of activity monitors to estimate energy cost of treadmill exercise. Med Sci Sports Exerc. 36: 12441251.
  • 10
    Welk, G. J., Schaben, J. A., Morrow, J. R., Jr (2004) Reliability of accelerometry-based activity monitors: a generalizability study. Med Sci Sports Exerc. 36: 16371645.
  • 11
    Fruin, M. L., Rankin, JW (2004) Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med Sci Sports Exerc. 36: 10631069.
  • 12
    Jakicic, J. M., Marcus, M., Gallagher, K. I., et al. (2004) Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc. 36: 897904.
  • 13
    Harris, J. A., Benedict, FG (1919) A Biometric Study of Basal Metabolism in Man Carnegie Institution of Washington Washington, DC.
  • 14
    Bland, J. M., Altman, DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307310.
  • 15
    Dewitte, K., Fierens, C., Stockl, D., Thienpont, LM (2002) Application of the Bland-Altman plot for interpretation of method-comparison studies: a critical investigation of its practice. Clin Chem. 48: 799801.
  • 16
    Stockl, D., Cabaleiro, Rodriguez D., Van Uytfanghe, K., Thienpont, LM (2004) Interpreting method comparison studies by use of the Bland-Altman plot: reflecting the importance of sample size by incorporating confidence limits and predefined error limits in the graphic. Clin Chem. 50: 22162218.
  • 17
    McClave, S. A., Kleber, M. J., Lowen, CC (1999) Indirect calorimetry: can this technology impact patient outcome? Curr Opin Clin Nutr Metab Care 2: 6167.
  • 18
    Puigdevall, Raurich J. M., Juve, Ibanez J. (1998) Energy expenditure at rest: indirect calorimetry vs the Fick principle. Nutr Hosp. 13: 303308.
  • 19
    Haugen, H. A., Melanson, E. L., Tran, Z. V., Kearney, J. T., Hill, JO (2003) Variability of measured resting metabolic rate. Am J Clin Nutr. 78: 11411145.
  • 20
    DeLorenzo, A., Tabliabue, A., Andreoli, A., Testolin, GG, Comelli, MM, Deurenberg, P. (2001) Measured and predicted resting metabolic rate in Italian males and females, aged 18–59 y. Eur J Clin Nutr. 55: 208214.