• 1
    Levine, JA. (2004) Nonexercise activity thermogenesis (NEAT): environment and biology. Am J Physiol Endocrinol Metab. 286: 675685.
  • 2
    Levine, J. A., Lanningham-Foster, L. M., McCrady, S. K., et al (2005) Interindividual variation in posture allocation: possible role in human obesity. Science. 307: 584586.
  • 3
    Chen, K. Y., Bassett, D. R., Jr (2005) The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 37: S490S500.
  • 4
    Hendelman, D., Miller, K., Baggett, C., Debold, E., Freedson, P. (2000) Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 32: S442S449.
  • 5
    Levine, J. A., Baukol, P. A., Westerterp, KR. (2001) Validation of the Tracmor triaxial accelerometer system for walking. Med Sci Sports Exerc. 33: 15931597.
  • 6
    Rowlands, A. V., Thomas, P. W., Eston, R. G., Topping, R. (2004) Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Med Sci Sports Exerc. 36: 518524.
  • 7
    Bassett, D. R., Jr, Ainsworth, B. E., Swartz, A. M., Strath, S. J., O'Brien, W. L., King, G. A. (2000) Validity of four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc. 32: S471S480.
  • 8
    Mayagoitia, R. E., Lotters, J. C., Veltink, P. H., Hermens, H. (2002) Standing balance evaluation using a triaxial accelerometer. Gait Posture. 16: 5559.
  • 9
    Nagamine, S., Suzuki, S. (1964) Anthropometry and body composition of Japanese young men and women. Hum Biol. 36: 815.
  • 10
    Brozek, J., Grande, F., Anderson, J. T., Keys, A. (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 110: 113140.
  • 11
    Ministry of Health, Labour and Welfare, Japan (2005) Dietary Reference Intakes for Japanese, 2005. Daiichi Shuppan: Tokyo, Japan.
  • 12
    Futami, J., Tanaka, S., Yamamura, C., Oka, J., Ishikawa-Takata, K., Kashiwazaki, H. (2003) Measurement of energy expenditure by whole-body indirect human calorimeter: evaluation of validity and error factors. Nippon Eiyo Shokuryo Gakkaishi (J Jpn Soc Nutr Food Sci). 56: 229236.
  • 13
    Yamamura, C., Tanaka, S., Futami, J., Oka, J., Ishikawa-Takata, K., Kashiwazaki, H. (2003) Activity diary method for predicting energy expenditure as evaluated by a whole-body indirect human calorimeter. J Nutr Sci Vitaminol. 49: 262269.
  • 14
    Weir, JB. (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 109: 19.
  • 15
    Bland, J. M., Altman, DG. (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1: 307310.
  • 16
    Chen, K. Y., Sun, M. (1997) Improving energy expenditure estimation by using a triaxial accelerometer. J Appl Physiol. 83: 21122122.
  • 17
    Plasqui, G., Joosen, A. M., Kester, A. D., Goris, A. H., Westerterp, KR. (2005) Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res. 13: 13631369.
  • 18
    Crouter, S. E., Clowers, K. G., Bassett, D. R., Jr (2006) A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 100: 13241331.
  • 19
    Bouten, C. V., Westerterp, K. R., Verduin, M., Janssen, JD. (1994) Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. 26: 15161523.
  • 20
    Ganpule, A. A., Tanaka, S., Ishikawa-Takata, K., Tabata, I. (2007) Interindividual variability in sleeping metabolic rate in Japanese subjects. Eur J Clin Nutr. 61: 12561261.