SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37: 15951607.
  • 2
    Grundy SM, Cleeman JI, Daniels SR et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112: 27352752.
  • 3
    Mundy AL, Haas E., Bhattacharya I. et al. Fat intake modifies vascular responsiveness and receptor expression of vasoconstrictors: implications for diet-induced obesity. Cardiovasc Res 2007; 73: 368375.
  • 4
    Friedman EA, Friedman AL. Is there really good news about pandemic diabetic nephropathy? Nephrol Dial Transplant 2007; 22: 681683.
  • 5
    Schena FP, Gesualdo L.. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 2005; 16 (Suppl 1): S30S33.
  • 6
    Ridker PM, Wilson PW, Grundy SM. Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 2004; 109: 28182825.
  • 7
    Fortuño A., San José G., Moreno MU et al. Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes 2006; 55: 209215.
  • 8
    Hansel B., Giral P., Nobecourt E. et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab 2004; 89: 49634971.
  • 9
    Bae JH, Bassenge E., Kim KB et al. Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atherosclerosis 2001; 155: 517523.
  • 10
    Ceriello A.. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 2008; 31 (Suppl 2): S181S184.
  • 11
    Giugliano D., Ceriello A., Esposito K.. The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol 2006; 48: 677685.
  • 12
    Keaney JF Jr, Larson MG, Vasan RS et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 2003; 23: 434439.
  • 13
    Picchi A., Gao X., Belmadani S. et al. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res 2006; 99: 6977.
  • 14
    Riccardi G., Giacco R., Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 2004; 23: 447456.
  • 15
    Kris-Etherton P., Eckel RH, Howard BV, St Jeor S., Bazzarre TL. AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease. Circulation 2001; 103: 18231825.
  • 16
    Mansouri RM, Baugé E., Gervois P. et al. Atheroprotective effect of human apolipoprotein A5 in a mouse model of mixed dyslipidemia. Circ Res 2008; 103: 450453.
  • 17
    Coimbra TM, Janssen U., Gröne HJ et al. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int 2000; 57: 167182.
  • 18
    Gassler N., Elger M., Kränzlin B. et al. Podocyte injury underlies the progression of focal segmental glomerulosclerosis in the fa/fa Zucker rat. Kidney Int 2001; 60: 106116.
  • 19
    Lavaud S., Michel O., Sassy-Prigent C. et al. Early influx of glomerular macrophages precedes glomerulosclerosis in the obese Zucker rat model. J Am Soc Nephrol 1996; 7: 26042615.
  • 20
    Kasiske BL, Cleary MP, O'Donnell MP, Keane WF. Effects of genetic obesity on renal structure and function in the Zucker rat. J Lab Clin Med 1985; 106: 598604.
  • 21
    Danis RP, Yang Y.. Microvascular retinopathy in the Zucker diabetic fatty rat. Invest Ophthalmol Vis Sci 1993; 34: 23672371.
  • 22
    Banday AA, Marwaha A., Tallam LS, Lokhandwala MF. Tempol reduces oxidative stress, improves insulin sensitivity, decreases renal dopamine D1 receptor hyperphosphorylation, and restores D1 receptor-G-protein coupling and function in obese Zucker rats. Diabetes 2005; 54: 22192226.
  • 23
    Russo I., Del Mese P., Doronzo G. et al. Resistance to the nitric oxide/cyclic guanosine 5′-monophosphate/protein kinase G pathway in vascular smooth muscle cells from the obese Zucker rat, a classical animal model of insulin resistance: role of oxidative stress. Endocrinology 2008; 149: 14801489.
  • 24
    Chander PN, Gealekman O., Brodsky SV et al. Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol 2004; 15: 23912403.
  • 25
    Corsetti JP, Sparks JD, Peterson RG, Smith RL, Sparks CE. Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis 2000; 148: 231241.
  • 26
    Henriksen EJ, Teachey MK, Lindborg KA, Diehl CJ, Beneze AN. The high-fat-fed lean Zucker rat: a spontaneous isocaloric model of fat-induced insulin resistance associated with muscle GSK-3 overactivity. Am J Physiol Regul Integr Comp Physiol 2008; 294: R1813R1821.
  • 27
    Meyer C., Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab 2004; 287: E1049E1056.
  • 28
    Guggilam A., Haque M., Kerut EK et al. TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. Am J Physiol Heart Circ Physiol 2007; 293: H599H609.
  • 29
    Elks CM, Mariappan N., Haque M. et al. Chronic NF-{kappa}B blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR. Am J Physiol Renal Physiol 2009; 296: F298F305.
  • 30
    Mariappan N., Soorappan RN, Haque M., Sriramula S., Francis J.. TNF-alpha-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 2007; 293: H2726H2737.
  • 31
    Li YL, Gao L., Zucker IH, Schultz HD. NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res 2007; 75: 546554.
  • 32
    Khaleduzzaman M., Francis J., Corbin ME et al. Infection of cardiomyocytes and induction of left ventricle dysfunction by neurovirulent polytropic murine retrovirus. J Virol 2007; 81: 1230712315.
  • 33
    Liu D., Gao L., Roy SK, Cornish KG, Zucker IH. Neuronal angiotensin II type 1 receptor upregulation in heart failure: activation of activator protein 1 and Jun N-terminal kinase. Circ Res 2006; 99: 10041011.
  • 34
    Nishikawa T., Edelstein D., Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787790.
  • 35
    Coughlan MT, Thallas-Bonke V., Pete J. et al. Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy? Endocrinology 2007; 148: 886895.
  • 36
    Inoguchi T., Li P., Umeda F. et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49: 19391945.
  • 37
    Maher MA, Banz WJ, Zemel MB. Variations of blood pressures in lean Zucker rats fed low or high fat diets. J Nutr 1995; 125: 26182622.
  • 38
    Riley SG, Steadman R., Williams JD, Floege J., Phillips AO. Augmentation of kidney injury by basic fibroblast growth factor or platelet-derived growth factor does not induce progressive diabetic nephropathy in the Goto Kakizaki model of non-insulin-dependent diabetes. J Lab Clin Med 1999; 134: 304312.
  • 39
    Buettner R., Schölmerich J., Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 2007; 15: 798808.