• 1
    Keys A, Brozek J, Henschel A et al. The Biology of Human Starvation. University of Minnesota Press: Minneapolis, MN, 1950.
  • 2
    Dulloo AG, Jacquet J, Montani JP. Pathways from weight fluctuations to metabolic diseases: focus on maladaptive thermogenesis during catch-up fat. Int J Obes Relat Metab Disord 2002;26 Suppl 2: S46S57.
  • 3
    Dulloo AG, Girardier L. Influence of dietary composition on energy expenditure during recovery of body weight in the rat: implications for catch-up growth and obesity relapse. Metabolism 1992;41: 13361342.
  • 4
    Crescenzo R, Samec S, Antic V et al. A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth. Diabetes 2003;52: 10901097.
  • 5
    Dulloo AG, Mensi N, Seydoux J, Girardier L. Differential effects of high-fat diets varying in fatty acid composition on the efficiency of lean and fat tissue deposition during weight recovery after low food intake. Metabolism 1995;44: 273279.
  • 6
    Crescenzo R, Bianco F, Falcone I et al. Hepatic mitochondrial energetics during catch-up fat after caloric restriction. Metabolism 2010;59: 12211230.
  • 7
    Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem 2007;282: 24832493.
  • 8
    Folch J, Lees M, Stanley Sloane GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226: 497509.
  • 9
    Armsby HP. The Nutrition of Farm Animals. The Macmillan Company: New York, 1917.
  • 10
    Pénicaud L, Ferré P, Assimacopoulos-Jeannet F et al. Increased gene expression of lipogenic enzymes and glucose transporter in white adipose tissue of suckling and weaned obese Zucker rats. Biochem J 1991;279 (Pt 1): 303308.
  • 11
    Iossa S, Lionetti L, Mollica MP, Barletta A, Liverini G. Energy intake and utilization vary during development in rats. J Nutr 1999;129: 15931596.
  • 12
    Iossa S, Lionetti L, Mollica MP et al. Effect of high-fat feeding on metabolic efficiency and mitochondrial oxidative capacity in adult rats. Br J Nutr 2003;90: 953960.
  • 13
    Estabrook RW. Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods Enzymol 1967;10: 4147.
  • 14
    Strittmatter P, Spatz L, Corcoran D et al. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 1974;71: 45654569.
  • 15
    Crescenzo R, Lionetti L, Mollica MP et al. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction. Diabetes 2006;55: 22862293.
  • 16
    Fernandes MA, Custódio JB, Santos MS, Moreno AJ, Vicente JA. Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion 2006;6: 176185.
  • 17
    Lionetti L, Mollica MP, Crescenzo R et al. Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes (Lond) 2007;31: 15961604.
  • 18
    Srere PA. Citrate synthase. Methods Enzymol 1969;13: 35.
  • 19
    Khairallah RJ, Sparagna GC, Khanna N et al. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta 2010;1797: 15551562.
  • 20
    Giudetti AM, Sabetta S, Di Summa R et al. Differential effects of coconut oil- and fish oil-enriched diets on tricarboxylate carrier in rat liver mitochondria. J Lipid Res 2003;44: 21352141.
  • 21
    Gerson AR, Brown JC, Thomas R, Bernards MA, Staples JF. Effects of dietary polyunsaturated fatty acids on mitochondrial metabolism in mammalian hibernation. J Exp Biol 2008;211: 26892699.
  • 22
    Maniongui C, Blond JP, Ulmann L et al. Age-related changes in delta 6 and delta 5 desaturase activities in rat liver microsomes. Lipids 1993;28: 291297.
  • 23
    Ivanetich KM, Bradshaw JJ, Ziman MR. Delta 6-desaturase: improved methodology and analysis of the kinetics in a multi-enzyme system. Biochim Biophys Acta 1996;1292: 120132.
  • 24
    Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J Mol Med 2009;87: 679695.
  • 25
    de Fourmestraux V, Neubauer H, Poussin C et al. Transcript profiling suggests that differential metabolic adaptation of mice to a high fat diet is associated with changes in liver to muscle lipid fluxes. J Biol Chem 2004;279: 5074350753.
  • 26
    Scheja L, Toedter K, Mohr R et al. Liver TAG transiently decreases while PL n-3 and n-6 fatty acids are persistently elevated in insulin resistant mice. Lipids 2008;43: 10391051.
  • 27
    Biddinger SB, Miyazaki M, Boucher J, Ntambi JM, Kahn CR. Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes 2006;55: 20322041.
  • 28
    Mauvoisin D, Rocque G, Arfa O et al. Role of the PI3-kinase/mTor pathway in the regulation of the stearoyl CoA desaturase (SCD1) gene expression by insulin in liver. J Cell Commun Signal 2007;1: 113125.
  • 29
    Iossa S, Lionetti L, Mollica MP, Barletta A, Liverini G. Fat balance and hepatic mitochondrial function in response to fat feeding in mature rats. Int J Obes Relat Metab Disord 1999;23: 11221128.
  • 30
    Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999;20: 649688.
  • 31
    Michalik L, Wahli W. Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Curr Opin Biotechnol 1999;10: 564570.
  • 32
    Hulbert AJ, Turner N, Storlien LH, Else PL. Dietary fats and membrane function: implications for metabolism and disease. Biol Rev Camb Philos Soc 2005;80: 155169.
  • 33
    Brand MD, Couture P, Hulbert AJ. Liposomes from mammalian liver mitochondria are more polyunsaturated and leakier to protons than those from reptiles. Comp Biochem Physiol Biochem Mol Biol 1994;108: 181188.
  • 34
    Stillwell W, Jenski LJ, Crump FT, Ehringer W. Effect of docosahexaenoic acid on mouse mitochondrial membrane properties. Lipids 1997;32: 497506.
  • 35
    Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997;416: 1518.
  • 36
    Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol 1999;276: C692C699.
  • 37
    Matsuo T, Shimomura Y, Saitoh S et al. Sympathetic activity is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet. Metabolism 1995;44: 934939.
  • 38
    Matsuo T, Komuro M, Suzuki M. Beef tallow diet decreases uncoupling protein content in the brown adipose tissue of rats. J Nutr Sci Vitaminol 1996;42: 595601.
  • 39
    Summermatter S, Marcelino H, Arsenijevic D et al. Adipose tissue plasticity during catch-up fat driven by thrifty metabolism: relevance for muscle-adipose glucose redistribution during catch-up growth. Diabetes 2009;58: 22282237.
  • 40
    Summermatter S, Mainieri D, Russell AP et al. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase. FASEB J 2008;22: 774785.
  • 41
    Yepuri G, Marcelino H, Shahkhalili Y et al. Dietary modulation of body composition and insulin sensitivity during catch-up growth in a rat model: effects of oils rich in n6 or n3 polyunsaturated fatty acids. Br J Nutr 2011; 105: 17501753.