SEARCH

SEARCH BY CITATION

References

  • Ahmed, M., Lyass, L., Markham, P. N., Taylor, S. S., Vazquezlaslop & Neyfakh, A. A. (1995). Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacterial., 177, 39043910.
  • Ames, G. F. L. (1992). Bacterial periplasmic permeases as model systems for the superfamily of traffic ATPases, including the multidrug resistance protein and the cystic fibrosis transmembrane conductance regulator. Int. Rev. Cytol., 137, 135.
  • Awasthi, S., Singhai, S. S., Srivastava, S. K., Zimniak, P., Bajpai, K. K., Saxena, M., Sharma, R., Ziller, S. A., Frenkel, E. P., Singh, S. V., Nong, G. H. & Awasthi, Y. C. (1994). Adenosine triphosphate-dependent transport of doxorubicin, daunomycin and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein. J. Clin. Invest., 93, 958965.
  • Barker, G. & Simmons, N. L. (1981). Identification of two strains of cultures canine renal epithelial cells (MDCK cells) which display entirely different physiological properties. Q. J. Exp. Physiol., 66, 6172.
  • Barzilay, M. & Cabantchik, Z. I. (1979). Anion transport in red blood cells. Sites and sidedness of inhibition by high-affinity reversible binding probes. Membr. Biochem., 2, 297322.
  • Brayden, D., Krouse, M. E., Law, T. & Wine, J. J. (1993). Stilbenes stimulate T84 Cl secretion by elevation Ca2+. Am. J. Physiol., 264, G325G333.
  • Cabantchik, Z. & Rothstein, A. (1974). Membrane proteins related to anion permeability of human red blood cells. I. Localisation of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol., 15, 207226.
  • Cao, C. X., Silverstein, S. C., Neu, H. C. & Steinberg, T. H. (1992). J774 macrophages secrete antibiotics via organic anion transporters. J. Infect Dis., 165, 322328.
  • Carlier, M. B., Scorneaux, B. & Tulkens, P. M. (1991). Accumulation, subcellular distribution and activity of azithromycin (Az) compared to roxithromycin (Rx) and ciprofloxacin (Cp) in J774 macrophages (MO). In Abstracts, 31st Interscience Conference on Antimicrobial Agents and Chemotherapy. New York : American Society of Microbiology.
  • Carlier, M. B., Scorneaux, B., Zenebergh, A., Desnottes, J. & Tulkens, P. M. (1990). Cellular uptake, localisation and activity of fluoroquinolones in uninfected and infected macrophages. J. Antimicrobial. Chemother., 26, 2739.
  • Cavet, M. E. (1996). Intestinal Secretion of Organic Solutes, pp. 109114. Ph.D. Thesis, University of Newcastle upon Tyne.
  • Cavet, M. E., West, M. & Simmons, N. L. (1996). Transport and epithelial secretion of the cardiac glycoside by human intestinal epithelial Caco-2 cells. Br. J. Pharmacol., 118, 13891396.
  • Cohen, S., Hooper, D. C., Wolfson, J. S., Souza, K. S., Mcmurry, L. M. & Levy, S. B. (1988). Endogenous active efflux of norfloxacin in susceptible Escherichia coli Antimicrobial Agents Chemother., 32, 11871191.
  • Elferink, P. J. O., Bakker, C. T. M. & Jansen, P. L. M. (1993). Glutathione-conjugate transport by human colon adenocarcinoma cells (Caco-2 cells). Biochem. J., 290, 759764.
  • Evers, R., Zaman, C. G. R., Van Deetmer, L., Jansen, H., Calafat, J., Oomen, L. C. J. M., Elferink, P. J. O., Borst, P. & Schinkel, A. H. (1996). Basolateral localisation and export activity of the human multidrug resistance-associated protein in polarised pig kidney cells. J. Clin. Invest., 97, 12111218.
  • Flens, M., Zaman, G. J. R., Van Der Valk, P., Izquierdo, M. A., Schroeijers, A. B., Scheffer, G. L., Van Der Groep, P., Haas, M., Meijer, C. J. L. M. & Cheper, R. J. (1996). Tissue distribution of the multidrug resistance protein. Am. J. Pathol., 148, 12371247.
  • Grant, C., Valdimarsso, G., Hipfner, D. R., Almquist, K. C., Cole, S. P. C. & Deeley, R. G. (1994). Overexpression of multidrug resistance associated protein (MRP) increases resistance to natural products. Cancer Res., 54, 357361.
  • Griffiths, N. M., Hirst, B. H. & Simmons, N. L. (1993). Active secretion of the fluoroquinolone ciprofloxacin by human intestinal epithelial Caco-2 cell layers. Br. J. Pharmacol., 108, 575576.
  • Griffiths, N. M., Hirst, B. H. & Simmons, N. L. (1994). Active intestinal secretion of the fluoroquinolone antibacterials ciprofloxacin, norfloxacin and perfloxacin; a common secretory pathway? J. Pharmacol. Exp. Ther., 269, 496502.
  • Gupta, S., Thadepalli, F. & Gollapudi, S. (1995). Difloxacin reverses multidrug resistance in P388/ADR cells via a mechanism independent of P-glycoprotein and without correcting drug transport or subcellular drug distribution. Int. J. Oncol., 7, 475480.
  • Hirano, T., Iseki, K., Sato, I., Miyazaki, S., Takada, M., Kobayashi, M., Sugawara, M. & Miyazaki, S. (1995a). The intestinal transport mechanism of fluoroquinolones: Inhibitory effect of ciprofloxacin, an enoxacin derivative, on the membrane potential-dependent uptake of enoxacin. Pharmacol. Res., 12, 12991303.
  • Hirano, T., Iseki, K., Sugawara, M., Miyazaki, S., Takada, M. & Miyazaki, K. (1995b) Transport mechanism of enoxacin in rat brush-border membrane of renal cortex: Interaction with organic cation transport system and ionic diffusion potential dependent uptake. Biol. Pharmac. Bull., 18, 342346.
  • Horio, M., Chin, K. V., Currier, S. J., Goldenberg, S., Williams, C., Pastan, I., Gottesman, M. M. & Handler, J. (1989). Transepithelial transport of drugs by the multidrug transporter in cultured Madin-Darby canine kidney cell epithelia. J. Biol. Chem., 264, 1488014884.
  • Hunter, J., Hirst, B. H. & Simmons, N. L. (1993a). Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharmacol. Res., 10, 743749.
  • Hunter, J., Hirst, B. H. & Simmons, N. L. (1993b). Transepithelial secretion, cellular accumulation and cytotoxicity of vinblastine in defined MDCK cell strains. Biochim. Biophys. Acta, 1179, 110.
  • Hunter, J., Jepson, M. A., Tsuruo, T., Simmons, N. L. & Hirst, B. H. (1993c). Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem., 268, 1499114997.
  • Iseki, K., Hirano, T., Fukushi, Y., Kitamura, Y., Miyazaki, S., Takada, M., Sugarawa, M., Saitoh, H. & Miyazaki, K. (1992). The pH-dependent uptake of enoxacin by rat intestinal brush-border membrane vesicles. J. Pharm. Pharmacol., 44, 722726.
  • Jacquemin, E., Hagenbuch, B., Steiger, B., Wolkoff, A. W. & Meier, P. J. (1991). Expression of the hepatocellular chloride-dependent sulfobromophthalein uptake system in xenopus laevis oocytes. J. Clin. Invest., 88, 21462149.
  • Jacquemin, E., Hagenbuch, B., Steiger, B., Wolkoff, A. W. & Meier, P. J. (1994). Expression of a rat liver Na-independent organic anion transporter. Proc. Natl. Acad. Sci. U.S.A., 91, 133137.
  • Jaehde, U., Sorgel, K., Naber, K. G., Reiter, A., Seelmann, R., Sigl, G., Muth, P. & Schunack, W. (1989). Gastrointestinal secretion of ciprofloxacin (CIP) in healthy volunteers. In Program and Abstracts of the 29th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract No. 202. Washington , DC : American Society for Microbiology.
  • Jedlitschky, G., Leier, I., Buchholz, U., Centre, M. & Keppler, D. (1994). ATP-dependent transport of glutathione-S-conjugates by the multidrug resistance-associated protein. Cancer Res., 56, 988994.
  • Kaatz, G., Seo, S. M. & Ruble, C. A. (1993). Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus Antimicrobial Agents Chemother., 37, 10861094.
  • Karlsson, J., Kuo, S. M., Ziemniak, J. & Artursson, P. (1993). Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br. J. Pharmacol., 110, 10091016.
  • Lauterbach, F. (1977a). Fluxes of ions and drugs in isolated guinea-pig intestinal mucosa. J. Physiol., 266, 27P28P.
  • Lauterbach, F. (1977b). Intestinal secretion of organic ions and drugs. In Intestinal Permeation. ed. Kramer, M. & Lauterbach, F. pp. 173194. Amsterdam , Oxford : Excerpta Medica.
  • Lauterbach, F. (1983). Intestinal secretion of drugs. In Intestinale Transport. ed. Gilles-BaillienM. & Gilles, R. pp. 7686. Berlin , Heidelburg : Springer-Verlag.
  • Liu, J., Takiff, H. E. & Nikaido, H. (1996). Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J. Bacterial., 178, 37913795.
  • Mayer, U., Wagenaar, E., Beijnen, J. H., Smit, J. W., Meijer, D. K. F., Van Asperen, J., Borst, P. & Schinkel, A. H. (1996). Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdrla P-glycoprotein. Br. J. Pharmacol., 119, 10381044.
  • Mcewan, G. T. A., Hunter, J., Hirst, B. H. & Simmons, N. L. (1992). Volume-activated Cl secretion and transepithelial vinblastine secretion mediated by P-glycoprotein are not correlated in cultured human T84 intestinal epithelial layers. FEBS Lett., 304, 233236.
  • Mechetner, E. & Roninson, I. B. (1992). Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc. Natl. Acad. Sci., 89, 58245828.
  • Miyamoto, Y., Ganapathy, V. & Leibach, F. H. (1988). Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Am. J. Physiol., 255, G85G92.
  • Naftalin, R. & Curran, P. F. (1974). Galactose transport in rabbit ileum. J. Membr. Biol., 16, 257278.
  • Neyfakh, A., Borsch, C. M. & Kaatz, G. W. (1993). Fluoroquinolone resistance protein norA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrobial Agents Chemother., 37, 128129.
  • Okano, T., Maegawa, H., Inui, K. I. & Hori, R. (1990). Interaction of ofloxacin with organic cation transport system in rat renal brush-border membranes. J. Pharmacol. Exp. Ther., 255, 10331037.
  • Ooie, T., Suzuki, H., Terasaki, T. & Sugiyama, Y. (1996). Characterisation of the transport properties of a quinolone antibiotic, fleroxacin, in rat choroid plexus. Pharmacol. Res., 13, 523527.
  • Parry, M. F., Smego, D. A. & Digiovanni, M. A. (1988). Hepatobiliary kinetics and excretion of ciprofloxacin. Antimicrobial Agents Chemother., 32, 982985.
  • Peters, W. H. M. & Roelofs, H. M. J. (1992). Biochemical characterization of resistance to mitoxanthrone and adriamycin in Caco-2 human adenocarcinoma cells; a possible role for glutathione-S-transferases. Cancer Res., 52, 18861890.
  • Prieto, J. G., Barrio, J. P., Alvarez, A. I. & Gomez, G. (1988). Kinetic mechanism for the intestinal absorption of ofloxacin. J. Pharm. Pharmacol., 40, 211212.
  • Pritchard, L. B. & Miller, D. (1993). Mechanism mediating renal secretion of organic anions and organic cations. Physiol. Rev., 73, 765797.
  • Rabbaa, L., Dautrey, S., Colas-Linhart, N., Carbon, C. & Farinotti, R. (1995). Stereoselectivity of ofloxacin intestinal transport in the rat. Drugs, 49 (Suppl.2), 333334.
  • Ramon, J, Dautrey, S., Farinotti, R., Carbon, C. & Rubinstein, E. (1994). Intestinal elimination of ciprofloxacin in rabbits. Antimicrobial Agents Chemother., 38, 757760.
  • Rohwedder, R., Bergan, T., Thorsteinsson, S. B. & Scholl, H. (1990). Transintestinal elimination of ciprofloxacin. Chemotherapy, 36, 7784.
  • Rubinstein, E., Dautrey, S., Farinotti, R., St Julien, L., Ramon, J. & Carbon, C. (1995). Intestinal elimination of sparfloxacin, fleroxacin, and ciprofloxacin in rats. Antimicrobial Agents Chemother., 39, 99102.
  • Rubinstein, E., St Julien, L., Ramon, J., Dautrey, S., Farinotti, R., Huneau, J. F. & Carbon, C. (1994). The intestinal elimination of ciprofloxacin in the rat. J. Infect. Dis., 169, 218221.
  • Saitoh, H., Gerard, C. & Aungst, B. J. (1996). The secretory intestinal transport of some beta-lactam antibiotics and anionic compound: A mechanism contributing to poor oral absorption. J. Pharmacol. Exp. Ther., 278, 205211.
  • Sorgel, F. & Kinzig, M. (1993a). Pharmacokinetics of gyrase inhibitors, Part 1: Basic chemistry and gastrointestinal disposition. Am. J. Med., 94, 44S55S.
  • Sorgel, F. & Kinzig, M. (1993b). Pharmacokinetics of gyrase inhibitors, Part 2: Renal and hepatic elimination pathways and drug interactions. Am. J. Med., 94, 56S69S.
  • Sorgel, F., Naber, K. G., Jaehde, U., Reitter, A., Seelman, R. & Sigl, G. (1989). Brief report: gastrointestinal secretion of ciprofloxacin. Evaluation of the charcoal model for investigations in healthy volunteers. Am. J. Med., 87, 62S65S.
  • Sorgel, F., Naber, K. G., Kinzig, M., Mahr, G. & Muth, P. (1991). Comparative pharmacokinetics of ciprofloxacin and temafloxacin in humans: A review. Am. J. Med., 91 51S65S.
  • Steinburg, T. (1994). Cellular transport of drugs. Clin. Infect. Dis., 19, 916921.
  • Thwaites, D. T., Brown, C. D. A., Hirst, B. H. & Simmons, N. L. (1993a). Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H+ -coupled carriers at both apical and basal membranes. J. Biol. Chem., 268, 76407642.
  • Thwaites, D. T., Brown, C. D. A., Hirst, B. H. & Simmons, N. L. (1993b). H+ -coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayer display distinctive characteristics. Biochem. Biophys. Acta, 1151, 237245.
  • Thwaites, D. T., Hirst, B. H. & Simmons, N. L. (1994). Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (caco-2): identification of substrates that undergo H+ -coupled absorption. Br. J. Pharmacol., 113, 10501056.
  • Thwaites, D. T. & Simmons, N. L. (1996). pH sensitivity of aminoacid transport at the brush-border of human intestinal epithelial (Caco-2) cells is consistent with H+ symport. J. Physiol., 495, 96P.
  • Turnheim, K. & Lauterbach, F. (1972). Intestinal transport of quarternary ammonium compounds in vivo. Naunyn-Schmiede-berg's Achiv. Pharmacol. 274, R118.
  • Turnheim, K. & Lauterbach, F. (1977). Absorption and secretion of monoquarternary ammonium compounds by the isolated intestinal mucosa. Biochem. Pharmacol., 26, 99108.
  • Turnheim, K. & Lauterbach, F. (1980). Interaction between intestinal absorption and secretion of monoquarternary ammonium compounds in guinea pigs - A concept of the absorption kinetics of organic cations. J. Pharmacol. Exp. Ther., 212, 418424.
  • Ullrich, K. J., Rumrich, G., David, C. & Fritzsch, G. (1993a). Bisubstrates: Substances that interact with renal contraluminal organic anion and organic cation transport systems. II. Zwitterionic substrates: dipeptides, cephalosporins, quinolonecarboxylate gyrase inhibitors and phosphamide thiazine carboxylates; Nonionizable substrates: Steroid hormones and cyclophosphamides Pflügers Archiv. Eur. J. Physiol., 425, 300312.
  • Ullrich, K. J., Rumrich, G., David, C. & Fritzsch, G. (1993b). Bisubstrates: Substances that interact with renal contraluminal organic anion and organic cation transport systems. I. Amines, piperidines, piperazines, azepines, pyridine, quinolines, imidazoles, thiazoles, guanidines and hydrazines Pflügers Archiv. Eur. J. Physiol., 425, 280299.
  • Ullrich, K. J. & Rumrich, G. (1988). Contraluminal transport systems in the proximal tubule involved in secretion of organic anions. Am. J. Physiol., 254, F453F462.
  • Wolkoff, A., Samuelson, A. C., Johansen, K. L., Nakata, R., Withers, D. M. & Sosiak, A. (1987). Influence of Cl on organic anion transport in short-term cultured rat hepatocytes and isolated perfused rat liver. J. Clin. Invest., 79, 12591268.