SEARCH

SEARCH BY CITATION

References

  • Baumgarten, H. G. & Zimmermann, B. (1992). Neurotoxic phenylalkylamines and indolealkylamines. In Selective Neurotoxicity. ed. Herken, H. & Hucho, F. pp. 225291. Berlin : Springer-Verlag.
  • Berger, U. V., Gu, X. F. & Azmitia, E. C. (1992). The substituted amphetamines 3, 4-methylendioxymethamphetamine, metham-phetamine, p-chloroamphetamine and fenfluramine induced 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. Eur. J. Pharmacol., 215, 153158.
  • Bonanno, G., Fassio, A., Severi, P., Ruelle, A. & Raiteri, M. (1994). Fenfluramine releases serotonin from human brain nerve endings by a dual mechanism. J. Neurochem., 63, 11631166.
  • Bonish, H. (1984). The transport of (+)-amphetamine by the neuronal noradrenaline carrier. Naunyn-Schmiedeberg's Arch. Pharmacol., 327, 267272.
  • Bonnet, J.-J., Protais, P., Chagraoui, A. & Costentin, J. (1986). High-affinity [3H]GBR 12783 binding to a specific site associated with the neuronal dopamine uptake complex in the central nervous system. Eur. J. Pharmacol., 126, 211222.
  • Bowyer, J. F., Spuhler, K. P. & Weiner, N. (1984). Effects of phencyclidine, amphetamine and related compounds on dopamine release from and uptake into striatal synaptosomes. J. Pharmacol. Exp. Ther., 229, 671680.
  • Cinquanta, M., Ratovitski, T., Gobbi, M., Mennini, T. & Simantov, R. (1997). Carrier-mediated serotonin release induced by d-fenfluramine: studies with human neuroblastoma cells transfected with a rat serotonin transporter. Neuropharmacology, 36, 803809.
  • Delean, A., Munson, P. J. & Rodbard, D. (1978). Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am. J. Physiol., 235, E97E102.
  • Eshleman, A. J., Henningsen, R. A., Neve, K. A. & Janowsky, A. (1994). Release of dopamine via the human transporter. Mol. Pharmacol., 45, 312316.
  • Fisher, J. F. & Cho, A. K. (1979). Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J. Pharmacol. Exp. Ther., 208, 203209.
  • Frittoli, E., Gobbi, M. & Mennini, T. (1994). Involvement of P-type Ca2+ channels in the K+ - and d-fenfiuramine-induced [%]-5-HT release from rat hippocampal synaptosomes. Neuropharmacology, 33, 833835.
  • Galli, A., Blakely, R. D. & Defelice, L. J. (1996). Norepinephrine transporters have channel modes of conduction. Proc. Natl. Acad. Sci. U.S.A., 93, 86718676.
  • Garattini, S., Bizzi, A., Caccia, S. & Mennini, T. (1992). Progress report on the anorectic affects of dexfenfiuramine, fluoxetine and sertraline. Int. J. Obes., 16, (Suppl. 3), S43S50.
  • Gardier, A. M., Kaakkola, S., Erfurth, A. & Wurtman, R. J. (1992). Effects of methiothepin on changes in brain serotonin release induced by repeated administration of high doses of anorectic serotoninergic drugs. Brain Res., 588, 6774.
  • Gobbi, M., Frittoli, E., Mennini, T. & Garattini, S. (1992). Releasing activities of d-fenfiuramine and fluoxetine on rat hippocampal synaptosomes preloaded with [3H]serotonin. Naunyn-Schmiedeberg's Arch. Pharmacol., 345, 16.
  • Gobbi, M., Frittoli, E., Uslenghi, A. & Mennini, T. (1993). Evidence of an exocytotic-like release of [3H]-5-hydroxytryptamine induced by d-fenfiuramine in rat hippocampal synaptosomes. Eur. J. Pharmacol., 238, 917.
  • Goldstein, D. S., Feuerstein, G., Izzo, J. L., Kopin, I. J. & Keiser, H. R. (1981). Validity and reliability of liquid chromatography with electrochemical detection for measuring plasma levels of norepinephrine and epinephrine in man. Life Sci., 28, 467475.
  • Gray, E. G. & Whittaker, V. P. (1962). The isolation of nerve endings from brain: An electron-microscope study of cell fragments derived by homogenization and centrifugation. J. Anat., 96, 7987.
  • Green, A. R., Cross, A. J. & Goodwin, G. M. (1995). Review of the pharmacology and clinical pharmacology of 3, 4-methylenedioxy-methamphetamine (MDMA or ‘Ecstasy’). Psychopharmacology, 119, 247260.
  • Hekmatpanah, C. R. & Peroutka, S. J. (1990). 5-Hydroxytryptamine uptake blockers attenuate the 5-hydroxytryptamine-releasing effect of 3, 4-methylene-dioxymethamphetamine and related agents. Eur. J. Pharmacol., 177, 9598.
  • Hoyer, D. (1988). Functional correlates of serotonin 5-HT1 recognition sites. J. Receptor Res., 8, 5981.
  • Johnson, M. P., Hoffman, A. J. & Nichols, D. E. (1986). Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 132, 269276.
  • Levi, G. & Raiteri, M. (1974). Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake. Nature, 250, 735373.
  • Levi, G. & Raiteri, M. (1993). Carrier-mediated release of neurotransmitters. Trends Neurosci., 16, 415419.
  • Liang, N. Y. & Rutledge, C. O. (1982). Comparison of the release of [3H]dopamine from isolated corpus striatum by amphetamine, fenfluramine and unlabelled dopamine. Biochem. Pharmacol., 31, 983992.
  • Mager, S., Min, C., Henry, D. J. Chavkin, C., Hoffman, B. J., Davidson, N. & Lester, H. A. (1995). Conducting states of a mammalian serotonin transporter. Neuron, 12, 845859.
  • Maura, G., Gemignani, A., Versace, P., Martire, M. & Raiteri, M. (1982). Carrier-mediated and carrier-independent release of serotonin from isolated central nerve endings. Neurochem. Int., 4, 219224.
  • Mckenna, D. J., Guan, X.-M. & Shulgin, A. T. (1991). 3, 4-Methylendioaxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 38, 505512.
  • Mennini, T., Bizzi, A., Caccia, S., Codegoni, A., Fracasso, C., Frittoli, E., Guiso, G., Martin Padura, I., Taddei, C., Uslenghi, A. & Garattini, S. (1991). Comparative studies on the anorectic activity of d-fenfluramine in mice, rats, and guinea pigs. Naunyn-Schmiedeberg's Arch. Pharmacol., 343, 483490.
  • Mennini, T., Borroni, E., Samanin, R. & Garattini, S. (1981). Evidence of the existence of two different intraneuronal pools from which pharmacological agents can release serotonin. Neurochem. Int., 3, 289294.
  • Mennini, T., Gobbi, M., Crespi, D., Cinquanta, M., Frittoli, E., Giorcelli, P., Anelli, M. & Caccia, S. (1996). In vivo and in vitro interaction of fiunarizine with D-fenfluramine serotonergic effects. Pharmacol. Biochem. Behav., 53, 155161.
  • Mintz, I. M., Venema, V. J., Swiderek, K. M., Lee, T. D., Bean, B. P. & Adams, M. E. (1992). P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature, 355, 827829.
  • Pifl, C., Drobny, H., Reither, H., Hornykiewicz, O. & Singer, E. A. (1995). Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol. Pharmacol., 47, 368373.
  • Premkumar, L. S. & Ahern, G. P. (1995). Blockade of a resting potassium channels and modulation of synaptic transmission by ecstasy in the hippocampus. J. Pharmacol. Exp. Ther., 274, 718722.
  • Raiteri, M., Angelini, F. & Levi, G. (1974). A simple apparatus for studying the release of neurotransmitters from synaptosomes. Eur. J. Pharmacol., 25, 411414.
  • Raiteri, M., Cerrito, F., Cervoni, A. M. & Levi, G. (1979). Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. j. Pharmacol. Exp. Ther., 208, 195202.
  • Raiteri, M., Federico, R., Coletti, A. & Levi, G. (1975). Release and exchange studies relating to the synaptosomal uptake of GABA. J. Neurochem., 24, 12431250.
  • Rudnick, G. & Wall, S. C. (1992a). p-Chloroamphetamine induces serotonin release through serotonin transporters. Biochemistry, 31, 6710.
  • Rudnick, G. & Wall, S. C. (1992b). The molecular mechanism of ‘ecstasy’ [3, 4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc. Natl. Acad. Sci. U.S.A., 89, 18171821.
  • Schuldiner, S., Steiner-Murdoch, S., Yelin, R., Wall, S. C. & Rudnick, G. (1993). Amphetamine derivatives interact with both plasma membrane and secretory vesicle biogenic amine transporters. Mol. Pharmacol., 44, 12271231.
  • Seiden, L. S., Sabol, K. E. & Ricaurte, G. A. (1993). Amphetamine: effects on catecholamine systems and behaviour. Annu. Rev. Pharmacol. Toxicol., 32, 639677.
  • Sonders, M. S. & Amara, S. G. (1996). Channels in transporters. Curr. Opinion Neurobiol., 6, 294302.
  • Sulzer, D., Chen, T.-K., Lau, Y. Y., Kristensen, H., Rayport, S. & Ewing, A. (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci., 15, 41024108.
  • Sulzer, D. & Rayport, S. (1990). Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron, 5, 797808.
  • Takimoto, G. S., Stittsworth, J. D. & Stephens, J. K. (1983). [3H]dopamine depletion from osmotically defined storage sites: effects of reserpine, 53 mM KCl, and d-amphetamine. J. Neurochem., 41, 119127.
  • Trendelemburg, U. (1979). Release induced by phenethylamines. In The Release of Catecholamines from Adrenergic Neurons, ed. Paton, D. M. pp. 333354. Oxford : Pergamon Press.
  • Uchikawa, T., Kiuchi, Y., Yura, A., Nakachi, N., Yamazaki, Y., Yokomizo, C. & Oguchi, K. (1995). Ca2+ -dependent enhancement of [3H]dopamine uptake in rat striatum: possible involvement of calmodulin-dependent kinases. J. Neurochem., 65, 20652071.
  • Wall, S. C., Gu, H. & Rudnick, G. (1995). Biogenic amine flux mediated by cloned transporters stably expressed in cultures cell lines: amphetamine specificity for inhibition and efflux. Mol. Pharmacol., 47, 544550.
  • White, T. D. (1975). A role for divalent cations in the uptake of noradrenaline by synaptosomes. J. Neurochem., 24, 10371042.
  • Wickems, C. H., Hollingsworth, C. K. & Bennett, B. A. (1995). Release of serotonin induced by 3, 4-methylendioxymethamphetamine (MDMA) and other substituted amphetamines in cultured fetal raphe neurons: further evidence for calcium-independent mechanisms of release. Brain Res., 695, 1018.
  • Wölfel, R. & Graefe, K.-H. (1992). Evidence for various tryptamines and related compounds acting as substrates of the platelet 5-hydroxytryptamine transporter. Naunyn-Schmiede-berg's Arch. Pharmacol., 345, 129136.
  • Yura, A., Kiuchi, Y., Uchikawa, T., Uchida, J., Yamazaki, Y. & Oguchi, K. (1996). Possible involvement of calmodulin-dependent kinases in Ca2+-dependent enhancement of [3H]5-hydroxytryptamine uptake in rat cortex. Brain Res., 738, 96102.
  • Zaczek, R., Culp, S. & De Souza, E.B. (1991). Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport. J. Pharmacol. Exp. Ther., 257, 830835.