SEARCH

SEARCH BY CITATION

References

  • Akk, G. Sine, S. & Auerbach, A. (1996). Binding sites contribute unequally to the gating of mouse nicotinic α-D200N acetylcholine receptors. J. Physiol. (Land.), 496, 185196.
  • Anson, L.C., Chen, P.E., Wyllie, D.J.A., Colquhoun, D. & Schoepfer, R. (1998). Identification of amino acid residues of the NR2A subunit which control glutamate potency in recombinant NR1/NR2A NMDA receptors. Journal of Neuroscience, 18, 581589.
  • Arunlakshana, O. & Schild, H. O. (1959). Some quantitative uses of drug antagonists. British Journal of Pharmacology and Chemotherapy, 14, 4758.
  • BÉHÉ, P., Stern, P., Wyllie, D.J.A., Nassar, M., Schoepfer, R. & Colquhoun, D. (1995). Determination of the NMDA NR1 subunit copy number in recombinant NMDA receptors. Proceedings of the Royal Society London B, 262, 205213.
  • Bertin, B., Freissmuth, M., Jockers, R., Strosberg, A.D. & Marullo, S. (1995) Cellular signaling by an agonist-activated receptor/Gs alpha fusion protein. Proc. Natl. Acad. Sci. USA, 91, 88278831.
  • Birdsall, N.J.M., Burgen, A.S.V. & Hulme, E.C. (1978). The Binding of agonists to brain muscarinic receptors. Molecular Pharmacology, 14, 723736.
  • Birnbaumer, L.G., Swartz, T.L., Abramowitz, J., Mintz, P.W., & Iyengar, R. (1980) Transient and steady state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase system from rat liver plasma membranes. Interpretation in terms of a simple two state model. J. Biol. Chem., 255, 35423551.
  • Black, J.W. & Leff, P. (1983). Operational models of pharmacological agonism. Proceedings of the Royal Society London B, 220, 141162.
  • Bourne, H.R. (1997). How receptors talk to trimeric G proteins. Current Opinion in Cell Biology, 9, 134142.
  • Burstein, E.S., Spalding, T.A. & Brann, M. R. (1997). Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins. Mol. Pharmacol., 51, 312319.
  • Burt, A.R., Sautel, M., Wilson, M.A., Rees, S., Wise, A. & Milligan, G. (1998). Agonist occupation of an α2A-Adrenoceptor-Gilα fusion protein results in activation of both receptor-linked and endogenous Gi proteins. Journal of Biological Chemistry, 273, 1036710375.
  • Campos-caro, A., Sala, S., Ballesta J.J., Vicente-agullo, F., Criado, M. & Sala, F. (1996). A single residue in the M2-M3 loop is a major determinant of coupling between binding and gating in neuronal nicotinic receptors. Proc. Natl. Acad. Sci. USA, 93, 61186123.
  • Changeux, J.-P. (1993). Allosteric proteins: from regulatory enzymes to receptors. BioEssays, 15, 625634.
  • Chen, J., Zhang, Y., Akk, G., Sine, S. & Auerbach, A. (1995). Activation kinetics of recombinant mouse nicotinic acetylcholine receptors: Mutations of α-subunit tyrosine 190 affect both binding and gating. Biophysical Journal, 69, 849859.
  • Chiara, D.C., Middleton, R.E. & Cohen, J. B. (1998). Identification of tryptophan 55 as the primary site of [3H]nicotine photoincorporation in the Γ-subunit of the Torpedo nicotinic acetylcholine receptor. FEBS Letters, 423, 223226.
  • Clapham, D.E. (1996). The G-protein nanomachine. Nature, 379, 297299.
  • Clarke, W.P. & Bond, R.A. (1998). The elusive nature of intrinsic efficacy Trends in Pharmacological Sciences, 19, 270276.
  • Colquhoun, D. (1971). Lectures on Bio statistics, Clarendon Press, Oxford.
  • Colquhoun, D. (1973). The relation between classical and cooperative models for drug action. In Drug Receptors, Rang, H.P., pp. 149182, Macmillan Press, London.
  • Colquhoun, D. (1987). Affinity, efficacy and receptor classification: is the classical theory still useful? In: Perspectives on hormone receptor classification. Ed. Black, J.W.; Jenkinson, D.H. & Gerskowitch, V.P, pp 103104 New York, Alan R.Liss Inc., New York, 103–114.
  • Colquhoun, D. & Farrant, M. (1993). The Binding Issue. Nature, 366, 510511.
  • Colquhoun, D., Hawkes, A.G., Merlushkin, A. & Edmonds, B. (1997). Properties of single ion channel currents elicited by a pulse of agonist concentration or voltage. Philosophical Transactions of the Royal Society London (Physical Sciences), A 355, 17431786.
  • Colquhoun, D., Hawkes, A.G. & Srodzinski, K. (1996). Joint distributions of apparent open times and shut times of single ion channels and the maximum likelihood fitting of mechanisms. Philosophical Transactions of the Royal Society London, A 354, 25552590.
  • Colquhoun, D., Jonas, P. & Sakmann, B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. Journal of Physiology (London), 458, 261287.
  • Colquhoun, D. & Ogden, D.C. (1988). Activation of ion channels in the frog end-plate by high concentrations of acetylcholine. Journal of Physiology (London), 395, 131159.
  • Colquhoun, D. & Sakmann, B. (1981). Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature, 294, 464466.
  • Colquhoun, D. & Sakmann, B. (1985). Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. Journal of Physiology (London), 369, 501557.
  • Colquhoun, D. & Sakmann, B. (1998). From muscle endplate to brain synapses: A short history of synapses and agonist-activated ion channels. Neuron, 20, 381387.
  • Colquhoun, D. & Sigworth, F.J. (1995). Analysis of single ion channel data. In Single channel recording, ed. Sakmann, B. & Neher, E. pp. 483587, New York, Plenum Press.
  • Costa, T. & Herz, A. (1989). Antagonists with negative intrinsic activity at opioid receptors coupled to GTP-binding proteins. Proc. Natl. Acad. Sci. USA, 86, 73217325.
  • Costa, T., Ogino, Y., Munson, P.J., Onaran, H.O. & Rodbard, D. (1992). Drug Efficacy at guanine nucleotide-binding regulatory protein-linked receptors: Thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Molecular Pharmacology 41, 549560.
  • Del Castillo, J., Katz, B. (1957). Interaction at end-plate receptors between different choline derivatives. Proc. Roy. Soc. Land. B., 146, 369381.
  • De Lean, A., Stadel, J.M. & Lefkowitz, R. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem., 255, 71087117.
  • Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T. & Mackinnon, R. (1998). The Structure of the Potassium channel: Molecular Basis of K+ Conduction and Selectivity. Science, 280, 6977.
  • Edelstein, S.J. (1975). Cooperative interactions of hemoglobin. Annual Review of Biochemistry, 44, 209232.
  • Edmonds, B., Gibb, A. J. & Colquhoun, D. (1995). Mechanisms of activation of muscle nicotinic acetylcholine receptors, and the time course of endplate currents. Annual Review of Physiology, 57, 469493.
  • Edsall, J.T. & Wyman, J. (1958). Biophysical Chemistry. Academic Press, New York.
  • Franke, C, Parnas, H., Hovav, G. & Dudel, J. (1993). A molecular scheme for the reaction between acetylcholine and nicotinic channels. Biophysical Journal, 64, 339356.
  • Furchgott, R.F. (1966). The use of ς-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Advances in Drug Research, 3, 2155.
  • Gardner, P., Ogden, D.C, Colquhoun, D. (1984). Conductances of single ion channels opened by nicotinic agonists are indistinguishable. Nature, 309, 160162.
  • Gether, U., Lin, S. & Kobilka, B.K. (1995). Fluorescent labeling of purified β2 adrenergic receptor. Journal of Biological Chemistry, 270, 2826828275.
  • Gibb, A.J. & Colquhoun, D. (1992). Activation of N-Methyl-D-Aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. Journal of Physiology (London), 456, 143179.
  • Hill, A.V. (1909). The mode of action of nicotine and curari determined by the form of the contraction curve and the method of temperature coefficients. J. Physiol. (Land.), 39, 361373.
  • Hille, B. (1992). Ionic Channels of Excitable Membranes. 2nd ed. Sinauer Associates Inc., Sunderland, Mass.
  • Hollenberg, M.D. (1991). Structure-activity relationships for transmembrane signaling: the receptor's turn. FASEB J., 5, 178186.
  • Howe, J.R., Cull-candy, S.G. & Colquhoun, D. (1991). Currents through single glutamate-receptor channels in outside-out patches from rat cerebellar granule cells. Journal of Physiology (London), 432, 143202.
  • Hulme, E.C., Birdsall, N.J.M., Burgen, A.S.V. & Mehta, P. (1978). The binding of antagonists to brain muscarinic receptors. Molecular Pharmacology, 14, 737750.
  • Hulme, E.C., Birdsall, N.J.M. & Buckley, N.J. (1990). Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol, 30, 633673.
  • Imoto, K., Methfessel, C, Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y. & Numa, S. (1986). Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature, 324, 670674.
  • Imoto, K., Busch, C, Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K. & Numa, S. (1988). Rings of negatively charged amino acids as determinants of acetylcholine receptor channel conductance. Nature, 335, 645648.
  • Jackson, M.B. (1994). Single channel currents in the nicotinic acetylcholine receptor: a direct demonstration of allosteric transitions. Trends Biol. Sci., 19, 396399.
  • Jenkinson, D.H. (1989). Finding affinity constants for agonists by the irreversible antagonist method. Trends Pharmacol. Sci., 10, 1617.
  • Jenkinson, D.H.J. (1996). Classical Approaches to the Study of Drug-Receptor Interactions. In: Textbook of Receptor Pharmacology. 1st ed. ed. Foreman, J.C., JohansenT. CRC Press, Boca Raton, Florida, pp. 362.
  • Karlin, A. (1967). On the application of “a Plausible Model” of allosteric proteins to the receptor for acetylcholine. Journal of Theoretical Biology 16, 306320.
  • Karlin, A. & Akabas, M.H. (1995). Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron, 15, 12311244.
  • Kenakin, T. (1997a). A Pharmacologic Analysis of Drug-Receptor Interaction. 3rd ed. Lippincott-Raven, Philadelphia. 491 pages.
  • Kenakin, T. (1997b). Agonist-specific receptor conformations. Trends in Pharmacological Sciences, 18, 416417.
  • Kjelsberg, M.A., Cotecchia, S., Ostrowski, J., Caron, M.G. & Lefkowtiz, R.J. (1992). Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site. Journal of Biological Chemistry, 267, 14301433.
  • Laube, B., Hirai, H., Sturgess, M., Betz, H. & Kuhse, J. (1997). Molecular determinants of agonist discrimination by NMDA receptor subunits: Analysis of the glutamate binding site on the NR2B subunit. Neuron, 18, 493503.
  • Leff, P. & Dougal, I. G. (1993). Further concerns over Cheng-Prusoff analysis. Trends in Pharmacological Sciences, 14, 110112.
  • Leff, P. & Scaramellini, C. (1998). Promiscuity, pre-coupling and instability. Trends in Pharmacological Sciences, 19, 13.
  • Leff, P., Scaramellini, C, Law, C. & Mckechnie, K. (1997). A three-state receptor model of agonist action. Trends in Neuros-ciences, 18, 355362.
  • Lefkowitz, R.J., Cotecchia, S., Samamma, P. & Costa, T. (1993). Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends in Pharmacological Sciences, 14, 303307.
  • Lewis, T.M., Sivilotti, L.G., Colquhoun, D., Gardiner, R.M., Schoepfer, R. & Rees, M. (1998). Properties of human glycine receptors containing the hyperekplexia mutation α1 (K276E), expressed in Xenopus oocytes. Journal of Physiology (London), 507, 2540.
  • Liu, D.T., Tibbs, G.R., Paoletti, P., Siegelbaum, S.A. (1998). Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron, 21, 235248.
  • Lynch, J.W., Rajendra, S., Pierce, K.D., Handford, C.A., Barry, P.H. & Schofield, P.R. (1997). Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. EMBO Journal, 16, 110120.
  • Maconochie, D.J. & Steinbach, J.-H. (1998). The channel opening rate of adult- and fetal-type mouse muscle nicotinic receptors activated by acetylcholine. Journal of Physiology (London), 506, 5372.
  • Middleton, R.E. & Cohen, J.B. (1991). Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry, 30, 69876997.
  • Miller, C. (1997). Cuddling up to channel activation. Nature, 389, 328329.
  • Monod, J. & Jacob, F. (1961). General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 26, 389401.
  • Monod, J., Changeux, J.-P. & Jacob, F. (1963). Allosteric proteins and cellular control systems. Journal of Molecular Biology, 6, 306329.
  • Monod, J., Wyman, J. & Changeux, J.-P. (1965). On the nature of allosteric transitions: A plausible model. J. Mol. Biol., 12, 88118.
  • Morey, T.E., Belardinelli, L. & Dennis, D. M. (1998). Validation of Furchgott's method to determine agonist-dependent A1-adenosine receptor reserve in guinea-pig atrium. British Journal of Pharmacology, 123, 14251433.
  • Nargeot, J., Nerbonne, J.M., Engels, J. & Lester, H.A. (1983). Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proceedings of the National Academy of Sciences, USA, 80, 23952399.
  • Parmentier, M.-L., Joly, C, Restituito, S., Bockaert, J., Grau, Y. & Pin, J.-P. (1998). The G protein-coupling profile of metabotropic glutamate receptors, as determined with exogenous G proteins, is independent of their ligand recognition domain. Molecular Pharmacology, 53, 778786.
  • Pott, L. (1979). On the time course of the acetylcholine-induced hyperpolarization in quiescent guinea-pig atria. Pfluger's Archiv., 380, 7177.
  • Qin, F., Auerbach, A. & Sachs, F. (1997). Maximum likelihood estimation of aggregated Markov processes. Proceedings of the Royal Society London B, 264, 375383.
  • Rajendra, S., Lynch, J.W., Pierce, K.D., French, C.R., Barry, P.H. & Schofield, P.R. (1995). Mutation of an arginine residue in the human glycine receptor transforms á-alanine and taurine from agonists into competitive antagonists. Neuron, 14, 169175.
  • Rajendra, S. & Schofield, P.R. (1995). Molecular mechanisms of inherited startle syndromes. Trends in Neurosciences, 18, 8082.
  • Rosenmund, C, Stern-bach, Y. & Stevens, C.F. (1998). The tetrameric structure of a glutamate receptor channel. Science, 280, 15961599.
  • Ross, E.M. (1996). Pharmacodynamics. In The Pharmacological Basis of Therapeutics, eds. Hardman, J.G., Limbird, L.E., Molinoff, P.B., Ruddon, R.W. & Oilman, A.G. 9th edition, McGraw Hill.
  • Ruiz, M. & Karpen, J.W. (1997). Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature, 389, 389392.
  • Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R.J. (1993). A mutation-induced activated state of the β2,-adrenergic receptor: extending the ternary complex model. J. Biol. Chem., 268, 46254636.
  • Schild, H.O. (1949). pAx and competitive drug antagonism. British Journal of Pharmacology and Chemotherapy, 4, 277280.
  • Seifert, R., Wenzel-seifert, K., Lee, T.W., Gether, U., Sanders-bush, E. & Kobilka, B.K. (1998). Different effects of Gsα splice variants on β-adrenoreceptor-mediated signaling. J. Biol. Chem., 273, 51095116.
  • Shea, L.D., Omann, G.M. & Linderman, J.J. (1997). Calculation of diffusion-limited kinetics for the reactions in collision coupling and receptor cross-linking. Biophys. J., 73, 29492959.
  • Shortle, D. (1992). Mutational studies of protein structures and their stabilities. Quarterly Reviews of Biophysics, 25, 205250.
  • Sine, S.M., Claudio, T. & Sigworth, F.J. (1990). Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts: single channel current kinetics reveal distinct agonist binding affinities. Journal of General Physiology, 96, 395437.
  • Sine, S.M., Ohno, K., Bouzat, C, Auerbach, A., Milone, M., Pruitt, J.N. & Engel, A.G. (1995). Mutation of the acetylcholine receptor α subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron, 15, 229239.
  • Smith, G.B. & Olsen, R.W. (1994). Identification of a [3H]muscimol photoaffinity substrate in the bovine Γ-aminobutyric acid A receptor α subunit. Journal of Biological Chemistry, 269, 2038020387.
  • Stephenson, R.P. (1956). A modification of receptor theory. Br. J. Pharmacol, 11, 379393.
  • Stern, P., BÉHÉ, P., Schoepfer, R. & Colquhoun, D. (1992). Single channel properties of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proceedings of the Royal Society London B, 250, 271277.
  • Sucher, N.J., Awobuluyi, M.N., Choi, Y.-B. & Lipton, S.A. (1996). NMDA receptors: from genes to channels. Trends in Pharmacological Sciences, 17, 348355.
  • Swanson, G.T., Kamboj, S.K. & Cull-candy, S.G. (1997). Single-channel properties of recombinant AMPA receptors depends on RNA editing, splice variation, and subunit composition. Journal of Neuroscience. 17, 5869.
  • Tomaselli, G.F., Mclaughlin, J.T., Jurman, M. E., Hawrot, E. & Yellen, G. (1991). Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys. J., 60, 721727.
  • Tuĉek, S. (1997). Is the R and R* dichotomy real Trends in Pharmacological Sciences, 18, 414416.
  • Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature, 373, 3743.
  • Venter, D.P. (1997). Efficacy I: a new method for estimating relative efficacy of full agonists via newly defined efficacy related parameter. Eur. J. Pharmacol., 320, 223231.
  • Vincent, A., Newland, C, Croxen, R. & Beeson, D. (1997). Genes at the junction - candidates for congenital myasthenic syndromes. Trends in Neurosciences, 20, 1522.
  • Wang, H.-L., Auerbach, A., Bren, N., Ohno, K., Engel, A. G. & Sine, S.M. (1997). Mutation in the M1 domain of the acetylcholine receptor α subunit decreases the rate of agonist dissociation. Journal of General Physiology, 109, 757766.
  • Weiss, J.M., Morgan, P.H., Lutz, M.W. & Kenakin, T.P. (1996a). The cubic ternary complex receptor-occupancy Model I. Model description. Journal of Theoretical Biology, 178, 151167.
  • Weiss, J.M., Morgan, P.H., Lutz, M.W. & Kenakin, T.P. (1996b). The cubic ternary complex receptor-occupancy model II understanding apparent affinity. Journal of Theoretical Biology, 178, 169182.
  • Weiss, J.M., Morgan, P.H., Lutz, M.W. & Kenakin, T.P. (1996c). The cubic ternary complex receptor-occupancy model. III. Resurrecting efficacy. Journal of Theoretical Biology, 181, 381397.
  • Wise, A., Carr, I.C., Groarke, D.A. & Milligan, G. (1997). Measurement of agonist efficacy using an α2A-adrenoceptor-Gilα fusion protein. FEBS Letters, 419, 141146.
  • Wise, A. & Milligan, G. (1997). Rescue of functional interactions between the α2A-adrenoceptor and acylation-resistant forms of Gilα by expressing the proteins from chimeric open reading frames. Journal of Biological Chemistry, 272, 2467324678.
  • Wood, M.W., Vandongen, M.A. & Vandongen, M.J. (1997). An alanine residue in the M3-M4 linker lines the glycine binding pocket of the N-methyl-D-aspartate receptor. Journal of Biological Chemistry, 272, 35323537.
  • Wyllie, D.J.A., BÉHÉ, P., Nassar, M., Schoepfer, R. & Colquhoun, D. (1996). Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes. Proceedings of the Royal Society London, B 263, 10791086.
  • Wyllie, D.J.A., Behe, P. & Colquhoun, D. (1998). Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. Journal of Physiology (London), 510, 118 (Erratum: J Physiol. (Land). 1998, 512, 955).
  • Wyllie, D.J.A., Edmonds, B. & Colquhoun, D. (1997). Single activations of recombinant NMDA NR1a/NR2A receptors recorded in one-channel patches. Journal of Physiology (London), 501.P, 13P.
  • Wyman, J. & Gill, S.J. (1990). Binding and Linkage Functional chemistry of biological macromolecules. University Science Books, Mill Valley, CA.
  • Wyman, J., & Allen, D.W. (1951). The problem of the heme Interactions in hemoglobin and the basis of the Bohr effect. Journal of Polymer Science, VII, 499518.