• AKARAWUT, W., LIN, C.-J. & SMITH, D.E. (1998). Noncompetitive inhibition of glycylsarcosine transport by quinapril in rabbit renal brush border membrane vesicles: Effect on high-affinity peptide transporter. J. Pharmacol. Exp. Ther., 287, 684690.
  • BABENKO, A.P., AGUILAR-BRYAN, L. & BRYAN, J. (1998). A view of SUR/KIR6.X, KATP channels. Ann. Rev. Physiol., 60, 667687.
  • BENNETT, E. & KIMMICH, G.A. (1996). The molecular mechanism and potential dependence of the Na+/glucose cotransporter. Biophys. J., 70, 16761688.
  • BÖRNER, V., FEI, Y.-J., HARTRODT, B., GANAPATHY, V., LEIBACH, F.H., NEUBERT, K. & BRANDSCH, M. (1998). Transport of amino acid aryl amides by the intestinal H+/peptide cotransport system, PEPT1. Eur. J. Biochem., 255, 698702.
  • BRADFORD, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248254.
  • DANIEL, H. & HERGET, M. (1997). Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol., 273, F1F8.
  • DÖRING, F., WALTER, J., WILL, J., FÖCKING, M., BOLL, M., AMASHEH, S., CLAUSS, W. & DANIEL, H. (1998a). Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J. Clin. Invest., 101, 27612767.
  • DÖRING, F., WILL, J., AMASHEH, S., CLAUSS, W., AHLBRECHT, H. & DANIEL, H. (1998b). Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J. Biol. Chem., 273, 2321123218.
  • FÜCKEL, D. & PETZINGER, E. (1992). Interaction of sulphonylureas with the transport of bile acids into hepatocytes. Eur. J. Pharmacol., 213, 393404.
  • GANAPATHY, M.E., HUANG, W., WANG, H., GANAPATHY, V. & LEIBACH, F.H. (1998). Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun., 246, 470475.
  • HAN, H-.K., DE VRUEH, R.L.A., RHIE, J.K., COVITZ, K.-M.Y., SMITH, P.L., LEE, C.-P., OH, D.-M., SADÉE, W. & AMIDON, G.L. (1998). 5′-amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res., 15, 11541159.
  • INUI, K. & TERADA, T. (1999). Dipeptide transporters. In Membrane Transporters as Drug Targets. Amidon, G.L. & Sadée, W. (eds.). New York: Kluwer Academic/Plenum Publishers. pp. 269288.
  • KIMMICH, G.A., RANDLES, J. & WILSON, J. (1994). Na+-coupled alanine transport in LLC-PK1 cells. Am. J. Physiol., 267, C1119C1129.
  • KIRK, K., HORNER, H.A., SPILLETT, D.J. & ELFORD, B.C. (1993). Glibenclamide and meglitinide block the transport of low molecular weight solutes into malaria-infected erythrocytes. FEBS Lett., 323, 123128.
  • LEIBACH, F.H. & GANAPATHY, V. (1996). Peptide transporters in the intestine and the kidney. Ann. Rev. Nutr., 16, 99119.
  • MERLIN, D., STEEL, A., GEWIRTZ, A.T., SI-TAHAR, M., HEDIGER, M.A. & MADARA, J.L. (1998). hPepT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions. J. Clin. Invest., 102, 20112018.
  • PANTEN, U., BURGFELD, J., GOERKE, F., RENNICKE, M., SCHWANSTECHER, M., WALLASCH, A., ZÜNKLER, B.J. & LENZEN, S. (1989). Control of insulin secretion by sulphonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Biochem. Pharmacol., 38, 12171229.
  • PANTEN, U., SCHWANSTECHER, M. & SCHWANSTECHER, C. (1996). Sulfonylurea receptors and mechanism of sulfonylurea action. Exp. Clin. Endocrinol., 104, 19.
  • SAITO, H., OKUDA, M., TERADA, T., SASAKI, S. & INUI, K. (1995). Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in the intestine and kidney. J. Pharmacol. Exp. Ther., 275, 16311637.
  • SAITO, H., TERADA, T., OKUDA, M., SASAKI, S. & INUI, K. (1996). Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim. Biophys. Acta, 1280, 173177.
  • SHEPPARD, D.N. & ROBINSON, K.A. (1997). Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a murine cell line. J. Physiol. (Lond.), 503, 333346.
  • SHEPPARD, D.N. & WELSH, M.J. (1992). Effect of ATP-sensitive K+channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J. Gen. Physiol., 100, 573591.
  • TEMPLE, C.S., STEWART, A.K., MEREDITH, D., LISTER, N.A., MORGAN, K.M., COLLIER, I.D., VAUGHAN-JONES, R.D., BOYD, C.A.R., BAILEY, P.D. & BRONK, J.R. (1998). Peptide mimics as substrates for the intestinal peptide transporter. J. Biol. Chem., 273, 2022.
  • TERADA, T., SAITO, H., MUKAI, M. & INUI, K. (1997a). Characterization of stably transfected kidney epithelial cell line expressing rat H+/peptide cotransporter PEPT1: Localization of PEPT1 and transport of β-lactam antibiotics. J. Pharmacol. Exp. Ther., 281, 14151421.
  • TERADA, T., SAITO, H., MUKAI, M. & INUI, K. (1997b). Recognition of β-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am. J. Physiol., 273, F706F711.