SEARCH

SEARCH BY CITATION

References

  • AL-ANI, B., SAIFEDDINE, M. & HOLLENBERG, M.D. (1995). Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can. J. Physiol. Pharmacol., 73, 12031207.
  • BOHM, S.K., KONG, W., BROMME, D., SMEEKENS, S.P., ANDERSON, D.C., CONNOLLY, A., KHAN, M., NELKEN, N.A., COUGHLIN, S.R., PAYAN, D.G. & BUNNETT, N.W. (1996). Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J., 314, 10091016.
  • COCKS, T.M. & MOFFATT, J.D. (2000). Proteinase-activated receptors: sentries for inflammation? Trends Pharmacol. Sci., 21, 103108.
  • COCKS, T.M., SOZZI, V., MOFFATT, J.D. & SELEMIDIS, S. (1999). Protease-activated receptors mediate apamin-sensitive relaxation of mouse and guinea pig gastrointestinal smooth muscle. Gastroenterology, 116, 586592.
  • CORVERA, C.U., DÉRY, O., MCCONALOGUE, K., BÖHM, S.K., KHITIN, L.M., CAUGHEY, G.H., PAYAN, D.G. & BUNNETT, N.W. (1997). Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J. Clin. Invest., 100, 13831393.
  • CORVERA, C.U., DÉRY, O., MCCONALOGUE, K., GAMP, P., THOMA, M., AL-ANI, B., CAUGHEY, G.H., HOLLENBERG, M.D. & BUNNETT, N.W. (1999). Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol., 517, 741756.
  • DÉRY, O., CORVERA, C.U., STEINHOFF, M. & BUNNETT, N.W. (1998). Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am. J. Physiol., 274, C1429C1452.
  • GODIN, D., MARCEAU, F., BEAULE, C., RIOUX, F. & DRAPEAU, G. (1994). Aminopeptidase modulation of the pharmacological responses to synthetic thrombin receptor agonists. Eur. J. Pharmacol., 253, 225230.
  • GREEN, B.T., BUNNETT, N.W., KULKARNI-NARLA, A., STEINHOFF, M. & BROWN, D.R. (2000). Intestinal type 2 proteinase-activated receptors: expression in opioid-sensitive secretomotor neural circuits that mediate epithelial ion transport. J. Pharmacol. Exp. Therap., 295, 410416.
  • HOLLENBERG, M.D. (1999). Protease-activated receptors: PAR-4 and counting: how long is the course. Trends Pharmacol. Sci., 20, 271273.
  • HOLLENBERG, M.D., LANIYONU, A.A., SAIFEDDINE, M. & MOORE, G.J. (1993). Role of the amino- and carboxyl-terminal domains of thrombin receptor-derived polypeptides in biological activity in vascular endothelium and gastric smooth muscle: evidence for receptor subtypes. Mol. Pharmacol., 43, 921930.
  • HOLLENBERG, M.D., SAIFEDDINE, M., AL-ANI, B. & GUI, Y. (1999). Proteinase-activated receptor 4 (PAR4): action of PAR4-activating peptides in vascular and gastric tissue and lack of cross-reactivity with PAR1 and PAR2. Can. J. Physiol. Pharmacol., 77, 458464.
  • HOLLENBERG, M.D., SAIFEDDINE, M., AL-ANI, B. & KAWABATA, A. (1997). Proteinase activated receptor: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Can. J. Physiol. Pharmacol., 75, 832841.
  • ISHIHARA, H., CONNOLLY, A.J., ZENG, D., KAHN, M.L., ZHENG, Y.W., TIMMONS, C., TRAM, T. & COUGHLIN, S.R. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature, 386, 502506.
  • JOUET, P., SARNA, S.K., SINGARAM, C., RYAN, R.P., HILLARD, C.J., TELFORD, G.L., FINK, J. & HENDERSON, J.D. (1995). Immunocytes and abnormal gastrointestinal motor activity during ileitis in dogs. Am. J. Physiol., 269, G913G924.
  • KAHN, M.L., NAKANISHI-MATSUI, M., SHAPIRO, M.J., ISHIHARA, H. & COUGHLIN, S.R. (1999). Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest., 103, 879887.
  • KAHN, M.L., ZHENG, Y.W., HUANG, W., BIGORNIA, V., ZENG, D., MOFF, S., FARESE JR R.V., TAM, C. & COUGHLIN, S.R. (1998). A dual thrombin receptor system for platelet activation. Nature, 394, 690694.
  • KAWABATA, A., KURODA, R., KUROKI, N., NISHIKAWA, H. & KAWAI, K. (2000a). Dual modulation by thrombin of the motility ofl rat esophageal muscularis mucosae via two distinct protease-activated receptors (PARs): a novel role for PAR-4 as opposed to PAR-1. Br. J. Pharmacol., 131, 578584.
  • KAWABATA, A., KURODA, R., KUROKI, N., NISHIKAWA, H., KAWAI, K. & ARAKI, H. (2000b). Characterization of protease-activated receptor-1-mediated contraction and relaxation in the rat duodenal smooth muscle. Life Sciences, 67, 25212530.
  • KAWABATA, A., KURODA, R., NAGATA, N., KAWAO, N., MASUKO, T., NISHIKAWA, H. & KAWAI, K. (2001). In vivo evidence that protease-activated receptors 1 and 2 modulate gastrointestinal transit in the mouse. Br. J. Pharmacol., 133, 12131218.
  • KAWABATA, A., KURODA, R., NISHIKAWA, H. & KAWAI, K. (1999a). Modulation by protease-activated receptors of the rat duodenal motility in vitro: possible mechanisms underlying the evoked contraction and relaxation. Br. J. Pharmacol., 128, 865872.
  • KAWABATA, A., SAIFEDDINE, M., AL-ANI, B., LEBLOND, L. & HOLLENBERG, M.D. (1999b). Evaluation of proteinase-activated receptor-1 (PAR-1) agonists and antagonists using a cultured cell receptor desensitization assay: activation of PAR-2 by PAR-1 targeted ligands. J. Pharmacol. Exp. Therap., 228, 358370.
  • KONG, W., MCCONALOGUE, K., KHITIN, L.M., HOLLENBERG, M.D., PAYAN, D.G., BÖHM, S.K. & BUNNETT, N.W. (1997). Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci., 94, 88848889.
  • MACFARLANE, S.R., SEATTER, M.J., KANKE, T., HUNTER, G. & PLEVIN, R. (2001). Proteinase-activated receptors. Pharmacol. Rev., 53, 245282.
  • MOLINO, M., BARNATHAN, E.S., NUMEROF, R., CLARK, J., DREYER, M., CUMASHI, A., HOXIE, J.A., SCHECTER, N., WOOLKALIS, M. & BRASS, L.F. (1997). Interactions of mast cell tryptase with thrombin receptors and PAR-2. J. Biol. Chem., 272, 40434049.
  • MULÈ, F., D'ANGELO, S., AMATO, A., CONTINO, I. & SERIO, R. (1999a). Modulation by nitric oxide of spontaneous mechanical activity in rat proximal colon. J. Auton. Pharmacol., 19, 16.
  • MULÈ, F., D'ANGELO, S. & SERIO, R. (1999b). Tonic inhibitory action by nitric oxide on spontaneous activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels. Br. J. Pharmacol., 127, 514520.
  • MULÈ, F., POSTORINO, A., GERACI, A. & SERIO, R. (1992). Neurotensin: dual effect on the motor activity of rat duodenum. Eur. J. Pharmacol., 212, 215224.
  • MULÈ, F. & SERIO, R. (1997). Inhibition of mechanical activity by neurotensin in rat proximal colon: involvement of nitric oxide. Am. J. Physiol., 273, G491G497.
  • MULÈ, F., SERIO, R. & POSTORINO, A. (1995). Motility pattern of isolated proximal colon and excitatory action of neurotensin. Eur. J. Pharmacol., 275, 131137.
  • NYSTEDT, S., EMILSSON, K., WAHLESTEDT, C. & SUNDELIN, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci., 91, 92089212.
  • SAIFEDDINE, M., AL-ANI, B., CHENG, C.H., WANG, L. & HOLLENBERG, M.D. (1996). Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br. J. Pharmacol., 118, 521530.
  • SERIO, R., MULÈ, F., POSTORINO, A., VETRI, T. & BONVISSUTO, F. (1996). Apamin-sensitive and -insensitive components of inhibitory junction potentials in rat caecum: role of nitric oxide. J. Auton. Pharmacol., 16, 183189.
  • TOGNETTO, M., TREVISANI, M., MAGGIORE, B., NAVARRA, G., TURINI, A., GUERRINI, R., BUNNETT, N.W., GEPPETTI, P. & HARRISON, S. (2000). Evidence that PAR-1 and PAR-2 mediate prostanoid-dependent contraction in isolated guinea-pig gallbladder. Br. J. Pharmacol., 131, 689694.
  • VERGNOLLE, N. (2000). Proteinase-activated receptors – novel signals for gastrointestinal pathophysiology. Aliment. Pharmacol. Ther., 14, 257266.
  • VERGNOLLE, N., MACNAUGHTON, W.K., AL-ANI, B., SAIFEDDINE, M., WALLACE, J.L. & HOLLENBERG, M.D. (1998). Proteinase-activated receptor-2-activating peptides: identification of a receptor that regulates intestinal transport. Proc. Natl. Acad. Sci., 95, 77667777.
  • VERGNOLLE, N., WALLACE, J.L., BUNNETT, N.W. & HOLLENBERG, M.D. (2001). Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol. Sci., 22, 146152.
  • VU, T.K., HUNG, D.T., WHEATON, V.I. & COUGHLIN, S.R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64, 10571068.
  • WOOD, J.D.(1998). Enteric neuropathobiology. In Functional disorders of the gut. ed. Phillips, S.F. & Wingate, D.L. pp. 1942. London: Churchill Livingstone.
  • XU, W.F., ANDERSEN, H., WHITMORE, T.E., PRESNELL, S.R., YEE, D.P., CHING, A., GILBERT, T., DAVIE, E.W. & FOSTER, D.C. (1998). Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci., 95, 66426646.
  • ZHENG, X.L., RENAUX, B. & HOLLENBERG, M.D. (1998). Parallel contractile signal transduction pathways activated by receptors for thrombin and epidermal growth factor-urogastrone in guinea pig gastric smooth muscle: blockade by inhibitors of mitogen-activated protein kinase-kinase and phosphatidyl inositol 3′-kinase. J. Pharmacol. Exp. Therap., 285, 325334.