SEARCH

SEARCH BY CITATION

References

  • AUDINOT, V., NEWMAN-TANCREDI, A., CUSSAC, D., & MILLAN, M.J. (2001a). Inverse agonist properties of antipsychotic agents at cloned, human (h) serotonin (5-HT)1B and h5-HT1D receptors. Neuropsychopharmacology, 25, 410422.
  • AUDINOT, V., NEWMAN-TANCREDI, A., & MILLAN, M.J. (2001b). Constitutive activity at serotonin 5-HT1D receptors: detection and quantification by homologous [35S]-GTPγS versus GTPγS binding isotherms. Neuropharmacology, 40, 5764.
  • BAE, H., ANDERSON, K., FLOOD, L.A., SKIBA, N.P., HAMM, H.E., & GRABER, S.G. (1997). Molecular determinants of selectivity in 5-hydroxytryptamine 5-HT1B receptor-G-protein interactions. J. Biol. Chem., 272, 3207132077.
  • BARNES, N.M., & SHARP, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology, 38, 10831152.
  • BERG, K.A., STOUT, D.B., CROPPER, J.D., MAAYANI, S., & CLARKE, W.P. (1999). Novel actions of inverse agonists on 5-HT2C receptor systems. Mol. Pharmacol., 55, 863872.
  • BREIVOGEL, C.S., SELLEY, D.E., & CHILDERS, S.R. (1998). Cannabinoid receptor agonist efficacy for stimulating [35S]-GTPαS binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity. J. Biol. Chem., 273, 1686516873.
  • CANTRELL, A.R., & CATTERALL, W.A. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat. Rev. Neurosc., 2, 397407.
  • CLAWGES, H.M., DEPREE, K.M., PARKER, E.M., & GRABER, S.G. (1997). Human 5-HT1 receptor subtypes exhibit distinct G protein coupling behaviors in membranes from Sf9 cells. Biochemistry, 36, 1293012938.
  • COSI, C., & KOEK, W. (2000). The putative “silent” 5-HT1A receptor antagonist, WAY100,635, has inverse agonist properties at cloned human 5-HT1A receptors. Eur. J. Pharmacol., 401, 915.
  • COSTA, T., LANG, J., GLESS, C., & HERZ, A. (1990). Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: specific regulation by antagonists and sodium ions. Mol. Pharmacol., 37, 383394.
  • CUSSAC, D., NEWMAN-TANCREDI, A., DUQUEYROIX, D., PASTEAU, V., & MILLAN, M.J. (2002). Differential activation of Gq/11 and Gi3 proteins at 5-HT2C receptors revealed by antibody capture assays: influence of receptor reserve and relationship to agonist-directed trafficking. Mol. Pharmacol., 62, 578589.
  • DE LAPP, N., MCKINZIE, J.H., SAWYER, B.D., VANDERGRIFF, A., FALCONE, J., MCCLURE, D., & FELDER, C.C. (1999). Determination of [35S]guanosine-5′-O-(3-thio)triphosphate binding mediated by cholinergic muscarinic receptors in membranes from Chinese hamster ovary cells and rat striatum using an anti-G–protein scintillation proximity assay. J. Pharmacol. Exp. Ther., 289, 946955.
  • DE LIGT, R.A.F., KOUROUNAKIS, A.P., & IJZERMAN, A.P. (2000). Inverse agonism at G-protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br. J. Pharmacol., 130, 112.
  • ENGEL, G., GÖTHERT, M., HOYER, D., SCHLICKER, E., & HILLENBRAND, K. (1986). Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg's Arch. Pharmacol., 332, 17.
  • GANGULI, S.C., PARK, C.-G., HOLTMANN, M.H., HADAC, E.M., KENAKIN, T.P., & MILLER, L.J. (1998). Protean effects of a natural peptide agonist of the G-protein-coupled secretin receptor demonstrated by receptor mutagenesis. J. Pharmacol. Expt. Ther., 286, 593598.
  • GARNOVSKAYA, M.N., GETTYS, T.W., VAN BIESEN, T., PRPIC, V., CHUPRUN, J.K., & RAYMOND, J.R. (1997). 5-HT1A receptor activates Na+/H+ exchange in CHO-K1 cells through Giα2 and Giα3. J. Biol. Chem., 272, 77707776.
  • GASTER, L.M., BLANEY, F.E., DAVIES, S., DUCKWORTH, M., HAM, P., JENKINS, S., JENNINGS, A.J., JOINER, G.F., KING, F.D., MULHOLLAND, K.R., WYMAN, P.A., HAGAN, J.J., HATCHER, J., JONES, B.J., MIDDLEMISS, D.N., PRICE, G.W., RILEY, G., ROBERTS, C., ROUTLEDGE, C., SELKIRK, J., & SLADE, P.D. (1998). The selective 5-HT1B receptor inverse agonist 1′-methyl-5-[[2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]-2,3,6,7-tetrahydro-spiro[furo[2,3-f]indole-3,4′-piperidine] (SB-224289) potently blocks terminal 5-HT autoreceptor function both in vitro and in vivo. J. Med. Chem., 41, 12181235.
  • GERHARDT, M.A., & NEUBIG, R.R. (1991). Multiple Gi protein subtypes regulate a single effector mechanism. Mol. Pharmacol., 40, 707711.
  • GETTYS, T.W., SHERIFF-CARTER, K., MOOMAW, J., TAYLOR, I.L., & RAYMOND, J.R. (1994). Characterization and use of crude α-subunit preparations for quantitative immunoblotting of G-proteins. Anal. Biochem., 220, 8291.
  • HORSTMAN, D.A., BRANDON, S., WILSON, A.L., GUYER, C.A., CRAGOE, E.J., & LIMBIRD, L.E. (1990). An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J. Biol. Chem., 265, 2159021595.
  • JANSSON, C.C., KUKKONEN, J.P., NÄSMAN, J., HUIFANG, G., WURSTER, S., VIRTANEN, R., SAVOLA, J.-M., COCKCROFT, V., & ÅKERMAN, K.E.O. (1998). Protean agonism at α2A-adrenoceptors. Mol. Pharmacol., 53, 963968.
  • KENAKIN, T. (1995a). Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol. Sci., 16, 232238.
  • KENAKIN, T. (1995b). Pharmacological proteus Trends Pharmacol. Sci., 16, 256258.
  • LAW, S.F., YASUDA, K., BELL, G.I., & REISINE, T. (1993). Giα3 and Goα selectively associate with the cloned somatostatin receptor subtype SSTR2. J. Biol. Chem., 268, 1072110727.
  • LAZARENO, S., FARRIES, T., & BIRDSALL, N.J.M. (1993). Pharmacological characterisation of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors M1–M4. Life Sci., 52, 449456.
  • LORENZEN, A., FUSS, M., VOGT, H., & SCHWABE, U. (1993). Measurement of guanine nucleotide-binding protein activation by A1 adenosine receptor agonists in bovine brain membranes: stimulation of guanosine-5′-O-(3-[35S]thio)triphosphate binding. Mol. Pharmacol., 44, 115128.
  • MCLOUGHLIN, D.J., & STRANGE, P.G. (2000). Mechanisms of agonism and inverse agonism at serotonin 5-HT1A receptors. J. Neurochem., 74, 347357.
  • MENESES, A. (1999). 5-HT system and cognition. Neurosci. Biobehav. Rev., 23, 11111125.
  • MILLAN, M.J., GOBERT, A., AUDINOT, V., DEKEYNE, A., & NEWMAN-TANCREDI, A. (1999). Inverse agonists and serotonergic transmission: from recombinant human 5-HT1A and 5-HT1B receptors to quantification of G-protein coupling and function in corticolimbic structures. Neuropsychopharmacology, 21, 61S67S.
  • NEWMAN-TANCREDI, A., AUDINOT, V., MOREIRA, C., VERRIÈLE, L., & MILLAN, M.J. (2000). Inverse agonism and constitutive activity as functional correlates of serotonin h5-HT1B receptor/G-protein stoichiometry. Mol. Pharmacol., 58, 10421049.
  • NEWMAN-TANCREDI, A., CUSSAC, D., MARINI, L., & MILLAN, M.J. (2002a) Antibody capture assay reveals bell-shaped concentration–response isotherms for h5-HT1A receptor-mediated Gαi3 activation: conformational selection by high-efficacy agonists and relationship to trafficking of receptor signalling. Mol. Pharmacol., 62: 590601.
  • NEWMAN-TANCREDI, A., CUSSAC, D., TOUZARD, M., CHAPUT, C., MARINI, L., & MILLAN, M.J. (2002b). G-protein activation by h5-HT1B receptors expressed in CHO cells: scintillation proximity assays reveal constitutive Gαi3 activation. Br. Pharmacol. Soc., 135: 187.
  • PAUWELS, P.J. & PALMIER, C. (1994). Inhibition by 5-HT of forskolin-induced cAMP formation in the renal opossum epithelial cell line OK: mediation by a 5-HT1B like receptor and antagonism by methiothepin. Neuropharmacology, 33, 6775.
  • PAUWELS, P.J., RAULY, I., WURCH, T., & COLPAERT, F.C. (2002). Evidence for protean agonism of RX831003 at α2A-adrenoceptors by co-expression with different Gα protein subunits. Neuropharmacology, 42, 855863.
  • PAUWELS, P.J., TARDIF, C., PALMIER, C., WURCH, T., & COLPAERT, F.C. (1997). How efficacious are the 5-HT1B/D receptor ligands: an answer from GTPγS binding studies with stably transfected C6-glial cell lines. Neuropharmacology, 36, 499512.
  • PERT, C.B., & SNYDER, S.H. (1974). Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol. Pharmacol., 10, 868879.
  • ROULEAU, A., LIGNEAU, X., TARDIVEL-LACOMBE, J., MORISSET, S., GBAHOU, F., SCHWARTZ, J.-C., & ARRANG, J.-M. (2002). Histamine H3-receptor-mediated [35S]GTPγS binding: evidence for constitutive activity of the recombinant and native rat and human H3 receptors. Br. J. Pharmacol., 135, 383392.
  • SARI, Y., MIQUEL, M.-C., BRISORGUEIL, M.-J., RUIZ, G., DOUCET, E., HAMON, M., & VERGÉ, D. (1999). Cellular and subcellular localisation of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunochemical, autoradiographic and lesion studies. Neuroscience, 88, 899915.
  • SCHOEFFTER, P., & HOYER, D. (1989). 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some b-adrenergic antagonists. Naunyn-Schmiedeberg's Arch. Pharmacol., 340, 285292.
  • SEIFERT, R. (2001). Monovalent anions differentially modulate coupling of the β2-adrenoceptor to Gsα splice variants. J. Pharmacol. Exp. Ther., 298, 840847.
  • SELKIRK, J.V., SCOTT, C., HO, M., BURTON, M.J., WATSON, J., GASTER, L., COLLINS, L., JONES, B.J., MIDDLEMISS, D.N., & PRICE, G.W. (1998). SB-224289 a novel selective (human) 5-HT1B receptor antagonist with negative intrinsic activity. Br. J. Pharmacol., 125, 202208.
  • SELLEY, D.E., LIU, Q., & CHILDERS, S.R. (1998). Signal transduction correlates of Mu opioid agonist intrinsic efficacy: receptor-stimulated [35S]GTPγS binding in mMOR-CHO cells and rat thalamus. J. Pharmacol. Exp. Ther., 285, 496505.
  • THOMAS, D.R., FARUQ, S.A., BALCAREK, J.M., & BROWN, A.M. (1995). Pharmacological characterisation of [35S]-GTPγS binding to Chinese hamster ovary cell membranes stably expressing cloned human 5-HT1D receptor subtypes. J. Receptor Signal Transduction Res., 15, 199211.
  • URENJAK, J., & OBRENOVITCH, T.P. (1996). Pharmacological modulation of voltage-gated Na+ channels: a rational and effective strategy against ischemic brain damage. Pharmacol. Rev., 48, 2167.
  • WENZEL-SEIFERT, K., HURT, C.M., & SEIFERT, R. (1998). High constitutive activity of the human formyl peptide receptor. J. Biol. Chem., 273, 2418124189.
  • WURCH, T., & PAUWELS, P.J. (2000). Coupling of canine serotonin 5-HT1B and 5-HT1D receptor subtypes to the formation of inositol phosphates by dual interactions with endogenous Gi/o and recombinant Gα15 proteins. J. Neurochem., 75, 11801189.