SEARCH

SEARCH BY CITATION

References

  • AHLNER, J., ANDERSSON, R.G., TORFGARD, K. & AXELSSON, K.L. (1991). Organic nitrate esters: clinical use and mechanisms of actions. Pharmacol. Rev., 43, 351423.
  • BRIGGS, L.A. & PRITSOS, C.A. (1999). Relative contributions of mouse liver subcellular fractions to the bioactivation of mitomycin C at various pH levels. Biochem. Pharmacol., 58, 16091614.
  • CERESER, C., GUICHARD, J., DRAI, J., BANNIER, E., GARCIA, I., BOGET, S., PARVAZ, P. & REVOL, A. (2001). Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J. Chromatogr. B Biomed. Sci. Appl., 752, 123132.
  • CHEN, Z., ZHANG, J. & STAMLER, J.S. (2002). Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl. Acad. Sci. U.S.A., 99, 83068311.
  • DE DUVE, C. (1983). Microbodies in the living cell. Sci. Am., 248, 7484.
  • DELAFORGE, M., SERVENT, D., WIRSTA, P., DUCROCQ, C., MANSUY, D. & LENFANT, M. (1993). Particular ability of cytochrome P-450 CYP3A to reduce glyceryl trinitrate in rat liver microsomes: subsequent formation of nitric oxide. Chem. Biol. Interact., 86, 103117.
  • DOEL, J.J., GODBER, B.L., EISENTHAL, R. & HARRISON, R. (2001). Reduction of organic nitrates catalysed by xanthine oxidoreductase under anaerobic conditions. Biochim. Biophys. Acta, 1527, 8187.
  • FEELISH, M., NOACK, E. & SCHRODER, H. (1988). Explanation of the discrepancy between the degree of organic nitrate decomposition, nitrite formation and guanylate cyclase stimulation. Eur. Heart. J., 9 (Suppl A), 5762.
  • FUNG, H.L., CHUNG, S.J., BAUER, J.A., CHONG, S. & KOWALUK, E.A. (1992). Biochemical mechanism of organic nitrate action. Am. J. Cardiol., 70, 4B10B.
  • GOW, A.J., LUCHSINGER, B.P., PAWLOSKI, J.R., SINGEL, D.J. & STAMLER, J.S. (1999). The oxyhemoglobin reaction of nitric oxide. Proc. Natl. Acad. Sci. U.S.A., 96, 90279032.
  • GOW, A.J. & STAMLER, J.S. (1998). Reactions between nitric oxide and haemoglobin under physiological conditions. Nature, 391, 169173.
  • HARRISON, D.G. & BATES, J.N. (1993). The nitrovasodilators. New ideas about old drugs. Circulation, 87, 14611467.
  • HASEGAWA, K., TANIGUCHI, T., TAKAKURA, K., GOTO, Y. & MURAMATSU, I. (1999). Possible involvement of nitroglycerin converting step in nitroglycerin tolerance. Life Sci., 64, 21992206.
  • HENRY, Y., LEPOIVRE, M., DRAPIER, J.C., DUCROCQ, C., BOUCHER, J.L. & GUISSANI, A. (1993). EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J., 7, 11241134.
  • HILL, K.E., HUNT JR, R.W., JONES, R., HOOVER, R.L. & BURK, R.F. (1992). Metabolism of nitroglycerin by smooth muscle cells. Involvement of glutathione and glutathione S-transferase. Biochem. Pharmacol., 43, 561566.
  • HUNTER JR, F.E. & FORD, L. (1955). Nitrite formation by enzymatic reaction of mannitol hexanitrate with glutathione. J. Pharmacol. Exp. Ther., 113, 186191.
  • KEEN, J.M., HABIG, W.H. & JACOBY, W.B. (1976). Mechanism of the several activities of the glutathione-S-transferases. J. Biol. Chem., 251, 61836188.
  • KOHNO, M., MASUMIZU, T. & MORI, A. (1995). ESR demonstration of nitric oxide production from nitroglycerin and sodium nitrite in the blood of rats. Free Radic. Biol. Med., 18, 451457.
  • KOZLOV, A.V., BINI, A., IANNONE, A., ZINI, I. & TOMASI, A. (1996). Electron paramagnetic resonance characterization of rat neuronal nitric oxide production ex vivo. Methods Enzymol., 268, 229236.
  • KOZLOV, A.V., DIETRICH, B. & NOHL, H. (2002). Metabolism of glycerol trinitrate to nitric oxide in liver includes two steps and involves two intracellular compartments. Naunyn Schmiedeberg's Arch. Pharmacol., 365, 11.
  • KOZLOV, A.V., STANIEK, K. & NOHL, H. (1999). Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett., 454, 127130.
  • KURZ, M.A., BOYER, T.D., WHALEN, R., PETERSON, T.E. & HARRISON, D.G. (1993). Nitroglycerin metabolism in vascular tissue: role of glutathione S-transferases and relationship between NO and NO2 formation. Biochem. J., 292, 545550.
  • MATSUZAKI, T., SAKANASHI, M., NAKASONE, J., NOGUCHI, K., MIYAGI, K., KUKITA, I. & ANIYA, Y. (2002). Effects of glutathione S-transferase inhibitors on nitroglycerin action in pig isolated coronary arteries. Clin. Exp. Pharmacol. Physiol., 29, 10911095.
  • MCCORD, J.M. (1985). Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med., 312, 159163.
  • MILLAR, T.M., STEVENS, C.R., BENJAMIN, N., EISENTHAL, R., HARRISON, R. & BLAKE, D.R. (1998). Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett., 427, 225228.
  • MINAMIYAMA, Y., TAKEMURA, S., AKIYAMA, T., IMAOKA, S., INOUE, M., FUNAE, Y. & OKADA, S. (1999). Isoforms of cytochrome P450 on organic nitrate-derived nitric oxide release in human heart vessels. FEBS Lett., 452, 165169.
  • NEEDLEMAN, P. & HUNTER JR, F.E. (1976). Organic nitrate metabolism. Ann. Rev. Pharmacol. Toxicol., 16, 8193.
  • NIGAM, R., ANDERSON, D.J., LEE, S.F. & BENNETT, B.M. (1996). Isoform-specific biotransformation of glyceryl trinitrate by rat aortic glutathione S-transferases. J. Pharmacol. Exp. Ther., 279, 15271534.
  • NOHL, H., STANIEK, K., SOBHIAN, B., BAHRAMI, S., REDL, H. & KOZLOV, A.V. (2000). Mitochondria recycle nitrite back to the bioregulator nitric monoxide. Acta Biochim. Pol., 47, 913921.
  • PARKER, J.D. & PARKER, J.O. (1998). Nitrate therapy for stable angina pectoris. N. Engl. J. Med., 338, 520531.
  • SALVEMINI, D., PISTELLI, A., MOLLACE, V., ANGGARD, E. & VANE, J. (1992). The metabolism of glyceryl trinitrate to nitric oxide in the macrophage cell line J774 and its induction by Escherichia coli lipopolysaccharide. Biochem. Pharmacol., 44, 1724.
  • SALVEMINI, D., PISTELLI, A. & VANE, J. (1993). Conversion of glyceryl trinitrate to nitric oxide in tolerant and non-tolerant smooth muscle and endothelial cells. Br. J. Pharmacol., 108, 162169.
  • SCHRODER, H. (1992). Cytochrome P-450 mediates bioactivation of organic nitrates. J. Pharmacol. Exp. Ther., 262, 298302.
  • SERVENT, D., DELAFORGE, M., DUCROCQ, C., MANSUY, D. & LENFANT, M. (1989). Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: involvement of cytochrome P-450. Biochem. Biophys. Res. Commun., 163, 12101216.
  • SIMON, W.C., ANDERSON, D.J. & BENNETT, B.M. (1996). Inhibition of the pharmacological actions of glyceryl trinitrate after the electrophoretic delivery of a glutathione S-transferase inhibitor. J. Pharmacol. Exp. Ther., 279, 15351540.
  • SIMON, W.C., RAPTIS, L., PANG, S.C. & BENNETT, B.M. (1993). Comparison of liposome fusion and electroporation for the intracellular delivery of nonpermeant molecules to adherent cultured cells. J. Pharmacol. Toxicol. Methods, 29, 2935.
  • TAYLOR, I.W., IOANNIDES, C. & PARKE, D.V. (1989). Organic nitrate reductase: reassessment of its subcellular localization and tissue distribution and its relationship to the glutathione transferases. Int. J. Biochem., 21, 6771.
  • TSUCHIYA, K., TAKASUGI, M., MINAKUCHI, K. & FUKUZAWA, K. (1996). Sensitive quantitation of nitric oxide by EPR spectroscopy. Free Radic. Biol. Med., 21, 733737.
  • VANIN, A.F., KILADZE, S.V. & KUBRINA, L.N. (1977). Factors influencing formation of dinitrosyl complexes of non-heme iron in the organs of animals in vivo. Biofizika, 22, 850855.
  • YUAN, R., SUMI, M. & BENET, L.Z. (1997). Investigation of aortic CYP3A bioactivation of nitroglycerin in vivo. J. Pharmacol. Exp. Ther., 281, 14991505.
  • ZWEIER, J.L., SAMOUILOV, A. & KUPPUSAMY, P. (1999). Non-enzymatic nitric oxide synthesis in biological systems. Biochim. Biophys. Acta, 1411, 250262.
  • ZWEIER, J.L., WANG, P., SAMOUILOV, A. & KUPPUSAMY, P. (1995). Enzyme-independent formation of nitric oxide in biological tissues. Nat. Med., 1, 804809.