SEARCH

SEARCH BY CITATION

References

  • ARNSTEN, A.F., CAI, J.X., STEERE, J.C. & GOLDMAN-RAKIC, P.S. (1995). Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J. Neurosci., 15, 34293439.
  • BIDAUT-RUSSELL, M., DEVANE, W.A. & HOWLETT, A.C. (1990). Cannabinoid receptors and modulation of cyclic AMP accumulation in the rat brain. J. Neurochem., 55, 2126.
  • BOUABOULA, M., PERRACHON, S., MILLIGAN, L., CANAT, X., RINALDI-CARMONA, M., PORTIER, M., BARTH, F., CALANDRA, B., PECCEU, F., LUPKER, J., MAFFRAND, J.P., LE FUR, G. & CASELLAS, P. (1997). A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J. Biol. Chem., 272, 2233022339.
  • BRAVER, T.S. & BARCH, D.M. (2002). A theory of cognitive control, aging cognition, and neuromodulation. Neurosci. Biobehav. Rev., 26, 809817.
  • BREIVOGEL, C.S., SIM, L.J. & CHILDERS, S.R. (1997). Regional differences in cannabinoid receptor/G-protein coupling in rat brain. J. Pharmacol. Exp. Ther., 282, 16321642.
  • CADOGAN, A.K., ALEXANDER, S.P., BOYD, E.A. & KENDALL, D.A. (1997). Influence of cannabinoids on electrically evoked dopamine release and cyclic AMP generation in rat striatum. J. Neurochem., 69, 11311137.
  • CHENG, Y.C. & PRUSOFF, W.H. (1973). Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol., 22, 30993108.
  • DEVANE, W.A., DYSARZ III, F.A., JOHNSON, M.R., MELVIN, L.S. & HOWLETT, A.C. (1988). Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol., 34, 605613.
  • DEVANE, W.A., HANUS, L., BREUER, A., PERTWEE, R.G., STEVENSON, L.A., GRIFFIN, G., GIBSON, D., MANDELBAUM, A., ETINGER, A. & MECHOULAM, R. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258, 19461949.
  • DI MARZO, V. (1998). Endocannabinoids and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim. Biophys. Acta, 1392, 153175.
  • DI MARZO, V., FONTANA, A., CADAS, H., SCHINELLI, S., CIMINO, G., SCHWARTZ, J.C. & PIOMELLI, D. (1994). Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature, 372, 686691.
  • FEDELE, E., ANDRIOLI, G.C., RUELLE, A. & RAITERI, M. (1993). Release-regulating dopamine autoreceptors in human cerebral cortex. Br. J. Pharmacol., 110, 2022.
  • FELDER, C.C., JOYCE, K.E., BRILEY, E.M., MANSOURI, J., MACKIE, K., BLOND, O., LAI, Y., MA, A.L. & MITCHELL, R.L. (1995). Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol. Pharmacol., 48, 443450.
  • FEUERSTEIN, T.J., HERTTING, G., LUPP, A. & NEUFANG, B. (1986). False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of [3H]-5-hydroxytryptamine. Br. J. Pharmacol., 88, 677684.
  • FEUERSTEIN, T.J. & LIMBERGER, N. (1999). Mathematical analysis of the control of neurotransmitter release by presynaptic receptors as a supplement to experimental data. Naunyn-Schmiedeberg's Arch. Pharmacol., 359, 345359.
  • GIFFORD, A.N. & ASHBY JR, C.R. (1996). Electrically evoked acetylcholine release from hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 55212-2, and is potentiated by the cannabinoid antagonist, SR 141716A. J. Pharmacol. Exp. Ther., 277, 14311436.
  • GIFFORD, A.N., SAMIIAN, L., GATLEY, S.J. & ASHBY JR, C.R. (1997). Examination of the effect of the cannabinoid receptor agonist, CP 55,940, on electrically evoked transmitter release from rat brain slices. Eur. J. Pharmacol., 324, 187192.
  • HANSEN, H.H., SCHMID, P.C., BITTIGAU, P., LASTRES-BECKER, I., BERRENDERO, F., MANZANARES, J., IKONOMIDOU, C., SCHMID, H.H., FERNANDEZ-RUIZ, J.J. & HANSEN, H.S. (2001). Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J. Neurochem., 78, 14151427.
  • HERMANN, H., MARSICANO, G. & LUTZ, B. (2002). Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience, 109, 451460.
  • HILLARD, C.J., EDGEMOND, W.S. & CAMPBELL, W.B. (1995). Characterization of ligand binding to the cannabinoid receptor of rat brain membranes using a novel method: application to anandamide. J. Neurochem., 64, 677683.
  • HOWLETT, A.C., BARTH, F., BONNER, T.I., CABRAL, G., CASELLAS, P., DEVANE, W.A., FELDER, C.C., HERKENHAM, M., MACKIE, K., MARTIN, B.R., MECHOULAM, R. & PERTWEE, R.G. (2002). International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 54, 161202.
  • HOWLETT, A.C., QUALY, J.M. & KHACHATRIAN, L.L. (1986). Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol. Pharmacol., 29, 307313.
  • JACOBSSON, S.O., WALLIN, T. & FOWLER, C.J. (2001). Inhibition of rat C6 glioma cell proliferation by endogenous and synthetic cannabinoids. Relative involvement of cannabinoid and vanilloid receptors. J. Pharmacol. Exp. Ther., 299, 951959.
  • JENTSCH, J.D., VERRICO, C.D., LE, D. & ROTH, R.H. (1998). Repeated exposure to delta 9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat. Neurosci. Lett., 246, 169172.
  • KATHMANN, M., WEBER, B. & SCHLICKER, E. (2001). Cannabinoid CB1 receptor-mediated inhibition of acetylcholine release in the brain of NMRI, CD-1 and C57BL/6J mice. Naunyn-Schmiedeberg's Arch. Pharmacol., 363, 5056.
  • KUSTER, J.E., STEVENSON, J.I., WARD, S.J., D'AMBRA, T.E. & HAYCOCK, D.A. (1993). Aminoalkylindole binding in rat cerebellum: selective displacement by natural and synthetic cannabinoids. J. Pharmacol. Exp. Ther., 264, 13521363.
  • LAN, R., LIU, Q., FAN, P., LIN, S., FERNANDO, S.R., MC CALLION, D., PERTWEE, R. & MAKRIYANNIS, A. (1999). Structure–activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J. Med. Chem., 42, 769776.
  • LOWRY, O.H., ROSEBROUGH, N.J., FARR, A. & RANDALL, R.J. (1951). Protein measurements with the folin phenol reagent. J. Biol. Chem., 193, 265275.
  • LUPP, A., BÄR, K.I., LÜCKING, C.H. & FEUERSTEIN, T.J. (1992). Different effects of serotonin (5-HT) uptake blockers in caudate nucleus and hippocampus of the rabbit: role of monoamine oxidase in dopaminergic terminals. Psychopharmacology, 106, 118126.
  • MACCARRONE, M., VAN DER STELT, M., ROSSI, A., VELDINK, G.A., VLIEGENTHART, J.F. & AGRO, A.F. (1998). Anandamide hydrolysis by human cells in culture and brain. J. Biol. Chem., 273, 3233232339.
  • MACKIE, K. & HILLE, B. (1992). Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc. Natl. Acad. Sci. U.S.A., 89, 38253829.
  • MATO, S., PAZOS, S. & VALDIZAN, E.M. (2002). Cannabinoid receptor antagonism and inverse agonism in response to SR141716A on cAMP production in human and rat brain. Eur. J. Pharmacol., 443, 4346.
  • MESCHLER, J.P., KRAICHELY, D.M., WILKEN, G.H. & HOWLETT, A.C. (2000). Inverse agonist properties of N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A) and 1-(2-chlorophenyl)-4-cyano-5-(4-methoxyphenyl)-1H-pyrazole-3-carboxylic acid phenylamide (CP-272871) for the CB(1) cannabinoid receptor. Biochem. Pharmacol., 60, 13151323.
  • PERTWEE, R.G. (1997). Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 74, 129180.
  • REDMER, A., KATHMANN, M. & SCHLICKER, E. (2003). Cannabinoid CB(1) receptor-mediated inhibition of hippocampal acetylcholine release is preserved in aged mice. Br. J. Pharmacol., 138, 14251430.
  • ROSS, R.A., GIBSON, T.M., STEVENSON, L.A., SAHA, B., CROCKER, P., RAZDAN, R.K. & PERTWEE, R.G. (1999). Structural determinants of the partial agonist-inverse agonist properties of 6′-azidohex-2′-yne-delta8-tetrahydrocannabinol at cannabinoid receptors. Br. J. Pharmacol., 128, 735743.
  • SCHLICKER, E. & KATHMANN, M. (2001). Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci., 22, 565572.
  • SCHLICKER, E., TIMM, J. & GÖTHERT, M. (1996). Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn-Schmiedeberg's Arch. Pharmacol., 354, 791795.
  • SCHLICKER, E., TIMM, J., ZENTNER, J. & GÖTHERT, M. (1997). Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. Naunyn-Schmiedeberg's Arch. Pharmacol., 356, 583589.
  • SIM-SELLEY, L.J., BRUNK, L.K. & SELLEY, D.E. (2001). Inhibitory effects of SR141716A on G-protein activation in rat brain. Eur. J. Pharmacol., 414, 135143.
  • STEFFENS, M., FEUERSTEIN, T.J., VAN VELTHOVEN, V., SCHNIERLE, P. & KNÖRLE, R. (2003a). Quantitative measurement of depolarization-induced anandamide release in human and rat neocortex. Naunyn-Schmiedeberg's Arch. Pharmacol., 368, 432436.
  • STEFFENS, M., SZABO, B., KLAR, M., ROMINGER, A., ZENTNER, J. & FEUERSTEIN, T.J. (2003b). Modulation of electrically evoked acetylcholine release through cannabinoid CB1 receptors: evidence for an endocannabinoid tone in the human neocortex. Neuroscience, 120, 455465.
  • SULLIVAN, J.M. (2000). Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids. Learn. Mem., 7, 132139.
  • THOMAS, B.F., GILLIAM, A.F., BURCH, D.F., ROCHE, M.J. & SELTZMAN, H.H. (1998). Comparative receptor binding analyses of cannabinoid agonists and antagonists. J. Pharmacol. Exp. Ther., 285, 285292.
  • TWITCHELL, W., BROWN, S. & MACKIE, K. (1997). Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J. Neurophysiol., 78, 4350.
  • VASQUEZ, C., NAVARRO-POLANCO, R.A., HUERTA, M., TRUJILLO, X., ANDRADE, F., TRUJILLO-HERNANDEZ, B. & HERNANDEZ, L. (2003). Effects of cannabinoids on endogenous K+ and Ca2+ currents in HEK293 cells. Can. J. Physiol. Pharmacol., 81, 436442.
  • WILSON, R.I. & NICOLL, R.A. (2001). Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature, 410, 588592.