SEARCH

SEARCH BY CITATION

References

  • BLAKE, A.D., ANTHONY, N.M., CHEN, H.H., HARRISON, J.B., NATHANSON, N.M. & SATTELLE, D.B. (1993). Drosophila nervous system muscarinic acetylcholine receptor: transient functional expression and localization by immunocytochemistry. Mol. Pharmacol., 44, 716724.
  • BOWEN, D.M., SMITH, C.B., WHITE, P. & DAVISON, A.N. (1976). Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99, 459496.
  • BUCKINGHAM, S.D., HOSIE, A.M., ROUSH, R.L. & SATTELLE, D.B. (1994). Actions of agonists and convulsant antagonists on a Drosophila melanogaster GABA receptor (Rdl) homo-oligomer expressed in Xenopus oocytes. Neurosci. Lett., 181, 137140.
  • CHAVEZ-NORIEGA, L.E., CRONA, J.H., WASHBURN, M.S., URRUTIA, A., ELLIOTT, K.J. & JOHNSON, E.C. (1997). Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors hα2β2, hα2β4, hα3β2, hα3β4, hα4β2, hα4β4 and hα7 expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther., 280, 346356.
  • CHROMY, B.A., NOWAK, R.J., LAMBERT, M.P., VIOLA, K.L., CHANG, L., VELASCO, P.T., JONES, B.W., FERNANDEZ, S.J., LACOR, P.N., HOROWITZ, P., FINCH, C.E., KRAFFT, G.A. & KLEIN, W.L. (2003). Self-assembly of Abeta(1–42) into globular neurotoxins. Biochemistry, 42, 1274912760.
  • DINELEY, K.T., BELL, K.A., BUI, D. & SWEATT, J.D. (2002). β-Amyloid peptide activates α7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J. Biol. Chem., 277, 2505625061.
  • DOUGHERTY, J.J., WU, J. & NICHOLS, R.A. (2003). β-Amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J. Neurosci., 23, 67406747.
  • FU, W. & JHAMANDAS, J.H. (2003). β-Amyloid peptide activates non-α7 nicotinic acetylcholine receptors in rat basal forebrain neurons. J. Neurophysiol., 90, 31303136.
  • GIORDANO, T, PAN, J.B, MONTEGGIA, L.M, HOLZMAN, T.F., SNYDER, S.W., KRAFFT, G., GHANBARI, H & KOWALL, N.W. (1994). Similarities between β amyloid peptides 1–40 and 40–1: effects on aggregation, toxicity in vitro, and injection in young and aged rats. Exp. Neurol., 125, 175182.
  • GRASSI, F., PALMA, E., TONINI, R., AMICI, M., BALLIVET, M. & EUSEBI, F. (2003). Amyloid β1–42 peptide alters the gating of human and mouse α-bungarotoxin-sensitive nicotinic receptors. J. Physiol., 547, 147157.
  • HARDY, J.A. & HIGGINS, G.A. (1992). Alzheimer's disease: the amyloid cascade hypothesis. Science, 256, 184185.
  • KAR, S., SLOWIKOWSKI, S.P., WESTAWAY, D. & MOUNT, H.T. (2004). Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer's disease. J. Psychiatry Neurosci., 29, 427441.
  • KARLIN, A. (2002). Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci., 3, 102114.
  • LENA, C. & CHANGEUX, J.P. (1998). Allosteric nicotinic receptors, human pathologies. In: Torpedo electric organ to human brain: fundamental and applied aspects, Massoulie J. ed, pp. 6374. Amsterdam: Elsevier Life Sciences.
  • LINDSTROM, J., ANAND, R., PENG, X., GERZANICH, V., WANG, F. & LI, Y. (1995). Neuronal nicotinic receptor subtypes. Ann. NY. Acad. Sci., 757, 100116.
  • LIU, Q., KAWAI, H. & BERG, D.K. (2001). β-Amyloid peptide blocks the response of α7-containing nicotinic receptors on hippocampal neurons. Proc. Natl. Acad. Sci. U.S.A., 98, 47344739.
  • LUPU-MEIRI, M., SHAPIRA, H. & ORON, Y. (1990). Extracellular calcium participates in responses to acetylcholine in Xenopus oocytes. FEBS Lett., 262, 165169.
  • MEHTA, P.D., PIRTTILA, T., PATRICK, B.A., BARSHATZKY, M. & MEHTA, S.P. (2001). Amyloid β protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett., 304, 102106.
  • NELSON, M.E., KURYATOV, A., CHOI, C.H., ZHOU, Y. & LINDSTROM, J. (2003). Alternate stoichiometries of α4β2 nicotinic acetylcholine receptors. Mol. Pharmacol., 63, 332341.
  • NICKE, A., THURAU, H., SADTLER, S., RETTINGER, J. & SCHMALZING, G. (2004). Assembly of nicotinic α7 subunits in Xenopus oocytes is partially blocked at the tetramer level. FEBS Lett., 575, 5258.
  • PAPKE, R.L., BOULTER, J., PATRICK, J. & HEINEMANN, S. (1989). Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in xenopus oocytes. Neuron, 3, 589596.
  • PETTIT, D.L., SHAO, Z. & YAKEL, J.L. (2001). β-Amyloid1–42 peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci., 21, RC120.
  • ROMANELLI, M.N. & GUALTIERI, F. (2003). Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Med. Res. Rev., 23, 393426.
  • ROSSOR, M.N., FOX, N.C., FREEBOROUGH, P.A. & HARVEY, R.J. (1996). Clinical features of sporadic and familial Alzheimer's disease. Neurodegeneration, 5, 393397.
  • SELKOE, D.J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev., 81, 741766.
  • STINE JR, W.B., DAHLGREN, K.N., KRAFFT, G.A. & LADU, M.J. (2003). In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J. Biol. Chem., 278, 1161211622.
  • TOZAKI, H., MATSUMOTO, A., KANNO, T., NAGAI, K., NAGATA, T., YAMAMOTO, S. & NISHIZAKI, T. (2002). The inhibitory and facilitatory actions of amyloid-β peptides on nicotinic ACh receptors and AMPA receptors. Biochem. Biophys. Res. Commun., 294, 4245.
  • WANG, H.Y., LEE, D.H., DAVIS, C.B. & SHANK, R.P. (2000). Amyloid peptide Aβ1–42 binds selectively and with picomolar affinity to α7 nicotinic acetylcholine receptors. J. Neurochem., 75, 11551161.
  • WANG, J., DICKSON, D.W., TROJANOWSKI, J.Q. & LEE, V.M. (1999). The levels of soluble versus insoluble brain Aβ distinguish Alzheimer's disease from normal and pathologic aging. Exp. Neurol., 158, 328337.
  • WU, J., KUO, Y.P., GEORGE, A.A., XU, L., HU, J. & LUKAS, R.J. (2004). β-Amyloid directly inhibits human α4β2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J. Biol. Chem., 279, 3784237851.
  • ZWART, R. & VIJVERBERG, H.P. (1998). Four pharmacologically distinct subtypes of α4β2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol. Pharmacol., 54, 11241131.