SEARCH

SEARCH BY CITATION

References

  • AKBARALI, H.I., POTHOULAKIS, C. & CASTAGLIUOLO, I. (2000). Altered ion channel activity in murine colonic smooth muscle myocytes in an experimental colitis model. Biochem. Biophys. Res. Commun., 275, 637642.
  • AL-SAFFAR, A. & HELLSTROM, P.M. (2001). Contractile responses to natural tachykinins and selective tachykinin analogs in normal and inflamed ileal and colonic muscle. Scand. J. Gastroenterol., 36, 485493.
  • ANNESE, V., BASSOTTI, G., NAPOLITANO, G., USAI, P., ANDRIULLI, A. & VANTRAPPEN, G. (1997). Gastrointestinal motility disorders in patients with inactive Crohn's disease. Scand. J. Gastroenterol., 32, 11071117.
  • BOHM, S.K., KHITIN, L.M., GRADY, E.F., APONTE, G., PAYAN, D.G. & BUNNETT, N.W. (1996). Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J. Biol. Chem., 271, 2200322016.
  • BOSSONE, C., HOSSEINI, J.M., PINEIRO-CARRERO, V. & SHEA-DONOHUE, T. (2001). Alterations in spontaneous contractions in vitro after repeated inflammation of rat distal colon. Am. J. Physiol. Gastrointest. Liver Physiol., 280, G949G957.
  • BRADFORD, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248254.
  • BRADLEY, P.P., PRIEBAT, D.A., CHRISTENSEN, R.D. & ROTHSTEIN, G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol., 78, 206209.
  • CAMERER, E., HUANG, W. & COUGHLIN, S.R. (2000). Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc. Natl. Acad. Sci. U.S.A., 97, 52555260.
  • CENAC, N., COELHO, A.M., NGUYEN, C., COMPTON, S., ANDRADE-GORDON, P., MACNAUGHTON, W.K., WALLACE, J.L., HOLLENBERG, M.D., BUNNETT, N.W., GARCIA-VILLAR, R., BUENO, L. & VERGNOLLE, N. (2002). Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am. J. Pathol., 161, 19031915.
  • CENAC, N., GARCIA-VILLAR, R., FERRIER, L., LARAUCHE, M., VERGNOLLE, N., BUNNETT, N.W., COELHO, A.M., FIORAMONTI, J. & BUENO, L. (2003). Proteinase-activated receptor-2-induced colonic inflammation in mice: possible involvement of afferent neurons, nitric oxide, and paracellular permeability. J. Immunol., 170, 42964300.
  • CORVERA, C.U., DERY, O., MCCONALOGUE, K., GAMP, P., THOMA, M., AL-ANI, B., CAUGHEY, G.H., HOLLENBERG, M.D. & BUNNETT, N.W. (1999). Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol., 517, 741756.
  • DEPOORTERE, I., THIJS, T. & PEETERS, T.L. (2002). Generalized loss of inhibitory innervation reverses serotonergic inhibition into excitation in a rabbit model of TNBS-colitis. Br. J. Pharmacol., 135, 20112019.
  • HOLLENBERG, M.D., SAIFEDDINE, M. & AL-ANI, B. (1996). Proteinase-activated receptor-2 in rat aorta: structural requirements for agonist activity of receptor-activating peptides. Mol. Pharmacol., 49, 229233.
  • ISHIHARA, H., CONNOLLY, A.J., ZENG, D., KAHN, M.L., ZHENG, Y.W., TIMMONS, C., TRAM, T. & COUGHLIN, S.R. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature, 386, 502506.
  • KAWABATA, A. (2002). PAR-2: structure, function and relevance to human diseases of the gastric mucosa. Expert Rev. Mol. Med., 2002, 117.
  • KAWABATA, A., KURODA, R., KUROKI, N., NISHIKAWA, H. & KAWAI, K. (2000a). Dual modulation by thrombin of the motility of rat oesophageal muscularis mucosae via two distinct protease-activated receptors (PARs): a novel role for PAR-4 as opposed to PAR-1. Br. J. Pharmacol., 131, 578584.
  • KAWABATA, A., KURODA, R., KUROKI, N., NISHIKAWA, H., KAWAI, K. & ARAKI, H. (2000b). Characterization of the protease-activated receptor-1-mediated contraction and relaxation in the rat duodenal smooth muscle. Life Sci., 67, 25212530.
  • KAWABATA, A., NISHIKAWA, H., KURODA, R., KAWAI, K. & HOLLENBERG, M.D. (2000c). Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. Br. J. Pharmacol., 129, 18081814.
  • KINOSHITA, K., SATO, K., HORI, M., OZAKI, H. & KARAKI, H. (2003). Decrease in activity of smooth muscle L-type Ca2+ channels and its reversal by NF-κB inhibitors in Crohn's colitis model. Am. J. Physiol. Gastrointest. Liver Physiol., 285, G483G493.
  • KOCH, T.R., CARNEY, J.A., GO, V.L. & SZURSZEWSKI, J.H. (1988). Spontaneous contractions and some electrophysiologic properties of circular muscle from normal sigmoid colon and ulcerative colitis. Gastroenterology, 95, 7784.
  • LINDEN, D.R., MANNING, B.P., BUNNETT, N.W. & MAWE, G.M. (2001). Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons. Eur. J. Pharmacol., 431, 311314.
  • MATSUMOTO, T., YOSHIYAMA, S., WAKABAYASHI, K., KOBAYASHI, T. & KAMATA, K. (2004). Effect of chronic insulin on cromakalim-induced relaxation in established streptozotocin-diabetic rat basilar artery. Eur. J. Pharmacol., 504, 129137.
  • MIZUTA, Y., ISOMOTO, H. & TAKAHASHI, T. (2000). Impaired nitrergic innervation in rat colitis induced by dextran sulfate sodium. Gastroenterology, 118, 714723.
  • MULE, F., BAFFI, M.C., CAPPARELLI, A. & PIZZUTI, R. (2003). Involvement of nitric oxide and tachykinins in the effects induced by protease-activated receptors in rat colon longitudinal muscle. Br. J. Pharmacol., 139, 598604.
  • MULE, F., BAFFI, M.C. & CERRA, M.C. (2002a). Dual effect mediated by protease-activated receptors on the mechanical activity of rat colon. Br. J. Pharmacol., 136, 367374.
  • MULE, F., BAFFI, M.C., FALZONE, M. & CERRA, M.C. (2002b). Signal transduction pathways involved in the mechanical responses to protease-activated receptors in rat colon. J. Pharmacol. Exp. Ther., 303, 12651272.
  • NGUYEN, T.D., MOODY, M.W., STEINHOFF, M., OKOLO, C., KOH, D.S. & BUNNETT, N.W. (1999). Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J. Clin. Invest., 103, 261269.
  • NISHIKAWA, H., KAWAI, K., NISHIMURA, S., TANAKA, S., ARAKI, H., AL-ANI, B., HOLLENBERG, M.D., KURODA, R. & KAWABATA, A. (2002). Suppression by protease-activated receptor-2 activation of gastric acid secretion in rats. Eur. J. Pharmacol., 447, 8790.
  • NYSTEDT, S., EMILSSON, K., WAHLESTEDT, C. & SUNDELIN, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. U.S.A., 91, 92089212.
  • NYSTEDT, S., RAMAKRISHNAN, V. & SUNDELIN, J. (1996). The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor. J. Biol. Chem., 271, 1491014915.
  • OHAMA, T., HORI, M., SATO, K., OZAKI, H. & KARAKI, H. (2003). Chronic treatment with interleukin-1β attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J. Biol. Chem., 278, 4879448804.
  • OSSOVSKAYA, V.S. & BUNNETT, N.W. (2004). Protease-activated receptors: contribution to physiology and disease. Physiol. Rev., 84, 579621.
  • REDDY, S.N., BAZZOCCHI, G., CHAN, S., AKASHI, K., VILLANUEVA-MEYER, J., YANNI, G., MENA, I. & SNAPE Jr, W.J. (1991). Colonic motility and transit in health and ulcerative colitis. Gastroenterology, 101, 12891297.
  • SHI, X.Z. & SARNA, S.K. (2000). Impairment of Ca2+ mobilization in circular muscle cells of the inflamed colon. Am. J. Physiol. Gastrointest. Liver Physiol., 278, G234G242.
  • VAN BERGEIJK, J.D., VAN WESTREENEN, H., ADHIEN, P. & ZIJLSTRA, F.J. (1998). Diminished nitroprusside-induced relaxation of inflamed colonic smooth muscle in mice. Mediators Inflamm., 7, 283287.
  • VERGNOLLE, N. (2000). Review article: Proteinase-activated receptors – novel signals for gastrointestinal pathophysiology. Aliment Pharmacol. Ther., 14, 257266.
  • VU, T.K., HUNG, D.T., WHEATON, V.I. & COUGHLIN, S.R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64, 10571068.
  • WEINSTEIN, J.R., LAU, A.L., BRASS, L.F. & CUNNINGHAM, D.D. (1998). Injury-related factors and conditions down-regulate the thrombin receptor (PAR-1) in a human neuronal cell line. J. Neurochem., 71, 10341050.