SEARCH

SEARCH BY CITATION

References

  • Aromataris EC, Astill DS, Rychkov GY, Bryant SH, Bretag AH, Roberts ML (1999). Modulation of the gating of CIC-1 by S−(−) 2-(4-chlorophenoxy) propionic acid. Br J Pharmacol 126: 13751382.
  • Astill DS, Rychkov G, Clarke JD, Hughes BP, Roberts ML, Bretag AH (1996). Characteristics of skeletal muscle chloride channel C1C-1 and point mutant R304E expressed in Sf-9 insect cells. Biochim Biophys Acta 1280: 178186.
  • Conte Camerino D, Mambrini M, De Luca A, Tricarico D, Bryant SH, Tortorella V et al. (1988). Enantiomers of clofibric acid analogs have opposite actions on rat skeletal muscle chloride channels. Pflügers Arch 413: 105107.
  • Conte Camerino D, Tricarico D, Pierno S, Desaphy JF, Liantonio A, Pusch M et al. (2004). Taurine and skeletal muscle disorders. Neurochem Res 29: 135142.
  • Crompton M, Virji S, Doyle V, Johnson N, Ward JM (1999). The mitochondrial permeability transition pore. Biochem Soc Symp 66: 167179.
  • Cruickshank SF, Baxter LM, Drummond RM (2003). The Cl(−) channel blocker niflumic acid releases Ca(2+) from an intracellular store in rat pulmonary artery smooth muscle cells. Br J Pharmacol 140: 14421450.
  • De Luca A, Pierno S, Liantonio A, Camerino C, Conte Camerino D (1998). Phosphorylation and IGF-1-mediated dephosphorylation pathways control the activity and the pharmacological properties of skeletal muscle chloride channels. Br J Pharmacol 125: 477482.
  • De Luca A, Pierno S, Liantonio A, Cetrone M, Camerino C, Fraysse B et al. (2003). Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J Pharmacol Exp Ther 304: 453463.
  • De Luca A, Tricarico D, Pierno S, Conte Camerino D (1994). Aging and chloride channel regulation in rat fast-twitch muscle fibres. Pflugers Arch 427: 8085.
  • De Luca A, Tricarico D, Wagner R, Bryant SH, Tortorella V, Conte Camerino D (1992). Opposite effects of enantiomers of clofibric acid derivative on rat skeletal muscle chloride conductance: antagonism studies and theoretical modeling of two different receptor site interactions. J Pharmacol Exp Ther 260: 364368.
  • Estévez R, Schroeder BC, Accardi A, Jentsch TJ, Pusch M (2003). Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron 38: 4759.
  • Fraysse B, Desaphy JF, Pierno S, De Luca A, Liantonio A, Mitolo CI et al. (2003). Decrease in resting calcium and calcium entry associated with slow-to-fast transition in unloaded rat soleus muscle. FASEB J 17: 19161918.
  • Fraysse B, Desaphy JF, Rolland JF, Pierno S, Liantonio A, Giannuzzi V et al. (2006). Fiber type-related changes in rat skeletal muscle calcium homeostasis during aging and restoration by growth hormone. Neurobiol Dis 21: 372380.
  • Fraysse B, Liantonio A, Cetrone M, Burdi R, Pierno S, Frigeri A et al. (2004). The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiol Dis 17: 144154.
  • Gögelein H, Dahlem D, Englert HC, Lang HJ (1990). Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett 268: 7982.
  • Green JR, Margerison D (1978). Statistical Treatment of Experimental Data. Elsevier: New York, pp. 8688.
  • Grynkiewicz G, Poenie M, Tsien RY (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 34403450.
  • Hartzell C, Putzier I, Arreola J (2005). Calcium-activated chloride channels. Annu Rev Physiol 67: 719758.
  • Jordani MC, Santos AC, Prado IM, Uyemura SA, Curti C (2000). Flufenamic acid as an inducer of mitochondrial permeability transition. Mol Cell Biochem 210: 153158.
  • Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP et al. (2000). Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci USA 97: 925930.
  • Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M et al. (1992). The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257: 797800.
  • Large WA, Wang Q (1996). Characteristics and physiological role of the Ca(2+)-activated Cl− conductance in smooth muscle. Am J Physiol 271: C435C454.
  • Lee RJ, Shaw T, Sandquist M, Partridge LD (1996). Mechanism of action of the non-steroidal anti-inflammatory drug flufenamate on [Ca2+]i and Ca(2+)-activated currents in neurons. Cell Calcium 19: 431438.
  • Lee YT, Wang Q (1999). Inhibition of hKv2.1, a major human neuronal voltage-gated K+ channel, by meclofenamic acid. Eur J Pharmacol 378: 349356.
  • Liantonio A, De Luca A, Pierno S, Didonna MP, Loiodice F, Fracchiolla G et al. (2003). Structural requisites of 2-p-(chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1. Br J Pharmacol 139: 12551264.
  • Liantonio A, Picollo A, Babini E, Carbonara G, Fracchiolla G, Loiodice F et al. (2006). Activation and inhibition of kidney CLC-K chloride channels by fenamates. Mol Pharmacol 69: 165173.
  • Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT et al. (2002). Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10: 3544.
  • McCarty NA, McDonough S, Cohen BN, Riordan JR, Davidson N, Lester HA (1993). Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl channel by two closely related arylaminobenzoates. J Gen Physiol 102: 123.
  • Ottolia M, Toro L (1994). Potentiation of large conductance KCa channels by niflumic, flufenamic, and mefenamic acids. Biophys J 67: 22722279.
  • Papponen H, Kaisto T, Myllyla VV, Myllyla R, Metsikko K (2005). Regulated sarcolemmal localization of the muscle-specific ClC-1 chloride channel. Exp Neurol 191: 163173.
  • Pedersen TH, de Paoli F, Nielsen OB (2005). Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 125: 237246.
  • Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG (2004). Intracellular acidosis enhances the excitability of working muscle. Science 305: 11441147.
  • Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, Shabat D et al. (2005). Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 67: 10531066.
  • Pierno S, De Luca A, Camerino C, Huxtable RJ, Conte Camerino D (1998). Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers. J Pharmacol Exp Ther 286: 11831190.
  • Pierno S, De Luca A, Tricarico D, Roselli A, Natuzzi F, Ferrannini E et al. (1995). Potential risk of myopathy by HMG-CoA reductase inhibitors: a comparison of pravastatin and simvastatin effects on membrane electrical properties of rat skeletal muscle fibers. J Pharmacol Exp Ther 275: 14901496.
  • Pierno S, Desaphy JF, Liantonio A, De Bellis M, Bianco G, De Luca A et al. (2002). Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain 125: 15101521.
  • Pigoso AA, Uyemura SA, Santos AC, Rodrigues T, Mingatto FE, Curti C (1998). Influence of nonsteroidal anti-inflammatory drugs on calcium efflux in isolated rat renal cortex mitochondria and aspects of the mechanisms involved. Int J Biochem Cell Biol 30: 961965.
  • Poronnik P, Ward MC, Cook DI (1992). Intracellular Ca2+ release by flufenamic acid and other blockers of the non-selective cation channel. FEBS Lett 296: 245248.
  • Prisk V, Huard J (2003). Muscle injuries and repair: the role of prostaglandins and inflammation. Histol Histopathol 18: 12431256.
  • Pusch M, Accardi A, Liantonio A, Guida P, Traverso S, Conte Camerino D et al. (2002). Mechanisms of block of muscle type CLC chloride channels. Mol Membr Biol 19: 285292.
  • Pusch M, Liantonio A, Bertorello L, Accardi A, De Luca A, Pierno S et al. (2000). Pharmacological characterization of the chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives. Mol Pharmacol 58: 498507.
  • Qu Z, Hartzell HC (2001). Functional geometry of the permeation pathway of Ca2+-activated Clchannels inferred from analysis of voltage-dependent block. J Biol Chem 276: 1842318429.
  • Rosenbohm A, Rudel R, Fahlke C (1999). Regulation of the human skeletal muscle chloride channel hClC-1 by protein kinase C. J Physiol 514: 677685.
  • Tomisato W, Tanaka K, Katsu T, Kakuta H, Sasaki K, Tsutsumi S et al. (2004). Membrane permeabilization by non-steroidal anti-inflammatory drugs. Biochem Biophys Res Commun 323: 10321039.
  • Tricarico D, Conte Camerino D, Govoni S, Bryant SH (1991). Modulation of rat skeletal muscle chloride channels by activators and inhibitors of protein kinase C. Pflugers Arch 418: 500503.
  • Turck D, Roth W, Busch U (1996). A review of the clinical pharmacokinetics of meloxicam. Br J Rheumatol 35: 1316.
  • Uyemura SA, Santos AC, Mingatto FE, Jordani MC, Curti C (1997). Diclofenac sodium and mefenamic acid: potent inducers of the membrane permeability transition in renal cortex mitochondria. Arch Biochem Biophys 342: 231235.
  • Vane JR, Botting RM (1998). Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med 104: 2S8S.
  • Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E et al. (1986). Clchannel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflügers Arch 407: S128S141.
  • White MM, Aylwin M (1990). Niflumic and flufenamic acids are potent reversible blockers of Ca(2+)-activated Cl channels in Xenopus oocytes. Mol Pharmacol 37: 720724.